Distance from Perfect

Posted by wrttnwrd

In spite of all the advice, the strategic discussions and the conference talks, we Internet marketers are still algorithmic thinkers. That’s obvious when you think of SEO.

Even when we talk about content, we’re algorithmic thinkers. Ask yourself: How many times has a client asked you, “How much content do we need?” How often do you still hear “How unique does this page need to be?”

That’s 100% algorithmic thinking: Produce a certain amount of content, move up a certain number of spaces.

But you and I know it’s complete bullshit.

I’m not suggesting you ignore the algorithm. You should definitely chase it. Understanding a little bit about what goes on in Google’s pointy little head helps. But it’s not enough.

A tale of SEO woe that makes you go “whoa”

I have this friend.

He ranked #10 for “flibbergibbet.” He wanted to rank #1.

He compared his site to the #1 site and realized the #1 site had five hundred blog posts.

“That site has five hundred blog posts,” he said, “I must have more.”

So he hired a few writers and cranked out five thousand blogs posts that melted Microsoft Word’s grammar check. He didn’t move up in the rankings. I’m shocked.

“That guy’s spamming,” he decided, “I’ll just report him to Google and hope for the best.”

What happened? Why didn’t adding five thousand blog posts work?

It’s pretty obvious: My, uh, friend added nothing but crap content to a site that was already outranked. Bulk is no longer a ranking tactic. Google’s very aware of that tactic. Lots of smart engineers have put time into updates like Panda to compensate.

He started like this:

And ended up like this:
more posts, no rankings

Alright, yeah, I was Mr. Flood The Site With Content, way back in 2003. Don’t judge me, whippersnappers.

Reality’s never that obvious. You’re scratching and clawing to move up two spots, you’ve got an overtasked IT team pushing back on changes, and you’ve got a boss who needs to know the implications of every recommendation.

Why fix duplication if rel=canonical can address it? Fixing duplication will take more time and cost more money. It’s easier to paste in one line of code. You and I know it’s better to fix the duplication. But it’s a hard sell.

Why deal with 302 versus 404 response codes and home page redirection? The basic user experience remains the same. Again, we just know that a server should return one home page without any redirects and that it should send a ‘not found’ 404 response if a page is missing. If it’s going to take 3 developer hours to reconfigure the server, though, how do we justify it? There’s no flashing sign reading “Your site has a problem!”

Why change this thing and not that thing?

At the same time, our boss/client sees that the site above theirs has five hundred blog posts and thousands of links from sites selling correspondence MBAs. So they want five thousand blog posts and cheap links as quickly as possible.

Cue crazy music.

SEO lacks clarity

SEO is, in some ways, for the insane. It’s an absurd collection of technical tweaks, content thinking, link building and other little tactics that may or may not work. A novice gets exposed to one piece of crappy information after another, with an occasional bit of useful stuff mixed in. They create sites that repel search engines and piss off users. They get more awful advice. The cycle repeats. Every time it does, best practices get more muddled.

SEO lacks clarity. We can’t easily weigh the value of one change or tactic over another. But we can look at our changes and tactics in context. When we examine the potential of several changes or tactics before we flip the switch, we get a closer balance between algorithm-thinking and actual strategy.

Distance from perfect brings clarity to tactics and strategy

At some point you have to turn that knowledge into practice. You have to take action based on recommendations, your knowledge of SEO, and business considerations.

That’s hard when we can’t even agree on subdomains vs. subfolders.

I know subfolders work better. Sorry, couldn’t resist. Let the flaming comments commence.

To get clarity, take a deep breath and ask yourself:

“All other things being equal, will this change, tactic, or strategy move my site closer to perfect than my competitors?”

Breaking it down:

“Change, tactic, or strategy”

A change takes an existing component or policy and makes it something else. Replatforming is a massive change. Adding a new page is a smaller one. Adding ALT attributes to your images is another example. Changing the way your shopping cart works is yet another.

A tactic is a specific, executable practice. In SEO, that might be fixing broken links, optimizing ALT attributes, optimizing title tags or producing a specific piece of content.

A strategy is a broader decision that’ll cause change or drive tactics. A long-term content policy is the easiest example. Shifting away from asynchronous content and moving to server-generated content is another example.

“Perfect”

No one knows exactly what Google considers “perfect,” and “perfect” can’t really exist, but you can bet a perfect web page/site would have all of the following:

  1. Completely visible content that’s perfectly relevant to the audience and query
  2. A flawless user experience
  3. Instant load time
  4. Zero duplicate content
  5. Every page easily indexed and classified
  6. No mistakes, broken links, redirects or anything else generally yucky
  7. Zero reported problems or suggestions in each search engines’ webmaster tools, sorry, “Search Consoles”
  8. Complete authority through immaculate, organically-generated links

These 8 categories (and any of the other bazillion that probably exist) give you a way to break down “perfect” and help you focus on what’s really going to move you forward. These different areas may involve different facets of your organization.

Your IT team can work on load time and creating an error-free front- and back-end. Link building requires the time and effort of content and outreach teams.

Tactics for relevant, visible content and current best practices in UX are going to be more involved, requiring research and real study of your audience.

What you need and what resources you have are going to impact which tactics are most realistic for you.

But there’s a basic rule: If a website would make Googlebot swoon and present zero obstacles to users, it’s close to perfect.

“All other things being equal”

Assume every competing website is optimized exactly as well as yours.

Now ask: Will this [tactic, change or strategy] move you closer to perfect?

That’s the “all other things being equal” rule. And it’s an incredibly powerful rubric for evaluating potential changes before you act. Pretend you’re in a tie with your competitors. Will this one thing be the tiebreaker? Will it put you ahead? Or will it cause you to fall behind?

“Closer to perfect than my competitors”

Perfect is great, but unattainable. What you really need is to be just a little perfect-er.

Chasing perfect can be dangerous. Perfect is the enemy of the good (I love that quote. Hated Voltaire. But I love that quote). If you wait for the opportunity/resources to reach perfection, you’ll never do anything. And the only way to reduce distance from perfect is to execute.

Instead of aiming for pure perfection, aim for more perfect than your competitors. Beat them feature-by-feature, tactic-by-tactic. Implement strategy that supports long-term superiority.

Don’t slack off. But set priorities and measure your effort. If fixing server response codes will take one hour and fixing duplication will take ten, fix the response codes first. Both move you closer to perfect. Fixing response codes may not move the needle as much, but it’s a lot easier to do. Then move on to fixing duplicates.

Do the 60% that gets you a 90% improvement. Then move on to the next thing and do it again. When you’re done, get to work on that last 40%. Repeat as necessary.

Take advantage of quick wins. That gives you more time to focus on your bigger solutions.

Sites that are “fine” are pretty far from perfect

Google has lots of tweaks, tools and workarounds to help us mitigate sub-optimal sites:

  • Rel=canonical lets us guide Google past duplicate content rather than fix it
  • HTML snapshots let us reveal content that’s delivered using asynchronous content and JavaScript frameworks
  • We can use rel=next and prev to guide search bots through outrageously long pagination tunnels
  • And we can use rel=nofollow to hide spammy links and banners

Easy, right? All of these solutions may reduce distance from perfect (the search engines don’t guarantee it). But they don’t reduce it as much as fixing the problems.
Just fine does not equal fixed

The next time you set up rel=canonical, ask yourself:

“All other things being equal, will using rel=canonical to make up for duplication move my site closer to perfect than my competitors?”

Answer: Not if they’re using rel=canonical, too. You’re both using imperfect solutions that force search engines to crawl every page of your site, duplicates included. If you want to pass them on your way to perfect, you need to fix the duplicate content.

When you use Angular.js to deliver regular content pages, ask yourself:

“All other things being equal, will using HTML snapshots instead of actual, visible content move my site closer to perfect than my competitors?”

Answer: No. Just no. Not in your wildest, code-addled dreams. If I’m Google, which site will I prefer? The one that renders for me the same way it renders for users? Or the one that has to deliver two separate versions of every page?

When you spill banner ads all over your site, ask yourself…

You get the idea. Nofollow is better than follow, but banner pollution is still pretty dang far from perfect.

Mitigating SEO issues with search engine-specific tools is “fine.” But it’s far, far from perfect. If search engines are forced to choose, they’ll favor the site that just works.

Not just SEO

By the way, distance from perfect absolutely applies to other channels.

I’m focusing on SEO, but think of other Internet marketing disciplines. I hear stuff like “How fast should my site be?” (Faster than it is right now.) Or “I’ve heard you shouldn’t have any content below the fold.” (Maybe in 2001.) Or “I need background video on my home page!” (Why? Do you have a reason?) Or, my favorite: “What’s a good bounce rate?” (Zero is pretty awesome.)

And Internet marketing venues are working to measure distance from perfect. Pay-per-click marketing has the quality score: A codified financial reward applied for seeking distance from perfect in as many elements as possible of your advertising program.

Social media venues are aggressively building their own forms of graphing, scoring and ranking systems designed to separate the good from the bad.

Really, all marketing includes some measure of distance from perfect. But no channel is more influenced by it than SEO. Instead of arguing one rule at a time, ask yourself and your boss or client: Will this move us closer to perfect?

Hell, you might even please a customer or two.

One last note for all of the SEOs in the crowd. Before you start pointing out edge cases, consider this: We spend our days combing Google for embarrassing rankings issues. Every now and then, we find one, point, and start yelling “SEE! SEE!!!! THE GOOGLES MADE MISTAKES!!!!” Google’s got lots of issues. Screwing up the rankings isn’t one of them.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

The Inbound Marketing Economy

Posted by KelseyLibert

When it comes to job availability and security, the future looks bright for inbound marketers.

The Bureau of Labor Statistics (BLS) projects that employment for marketing managers will grow by 13% between 2012 and 2022. Job security for marketing managers also looks positive according to the BLS, which cites that marketing employees are less likely to be laid off since marketing drives revenue for most businesses.

While the BLS provides growth estimates for managerial-level marketing roles, these projections don’t give much insight into the growth of digital marketing, specifically the disciplines within digital marketing. As we know, “marketing” can refer to a variety of different specializations and methodologies. Since digital marketing is still relatively new compared to other fields, there is not much comprehensive research on job growth and trends in our industry.

To gain a better understanding of the current state of digital marketing careers, Fractl teamed up with Moz to identify which skills and roles are the most in demand and which states have the greatest concentration of jobs.

Methodology

We analyzed 75,315 job listings posted on Indeed.com during June 2015 based on data gathered from job ads containing the following terms:

  • “content marketing” or “content strategy”
  • “SEO” or “search engine marketing”
  • “social media marketing” or “social media management”
  • “inbound marketing” or “digital marketing”
  • “PPC” (pay-per-click)
  • “Google Analytics”

We chose the above keywords based on their likelihood to return results that were marketing-focused roles (for example, just searching for “social media” may return a lot of jobs that are not primarily marketing focused, such as customer service). The occurrence of each of these terms in job listings was quantified and segmented by state. We then combined the job listing data with U.S. Census Bureau population estimates to calculate the jobs per capita for each keyword, giving us the states with the greatest concentration of jobs for a given search query.

Using the same data, we identified which job titles appeared most frequently. We used existing data from Indeed to determine job trends and average salaries. LinkedIn search results were also used to identify keyword growth in user profiles.

Marketing skills are in high demand, but talent is hard to find

As the marketing industry continues to evolve due to emerging technology and marketing platforms, marketers are expected to pick up new skills and broaden their knowledge more quickly than ever before. Many believe this rapid rate of change has caused a marketing skills gap, making it difficult to find candidates with the technical, creative, and business proficiencies needed to succeed in digital marketing.

The ability to combine analytical thinking with creative execution is highly desirable and necessary in today’s marketing landscape. According to an article in The Guardian, “Companies will increasingly look for rounded individuals who can combine analytical rigor with the ability to apply this knowledge in a practical and creative context.” Being both detail-oriented and a big picture thinker is also a sought-after combination of attributes. A report by The Economist and Marketo found that “CMOs want people with the ability to grasp and manage the details (in data, technology, and marketing operations) combined with a view of the strategic big picture.”

But well-rounded marketers are hard to come by. In a study conducted by Bullhorn, 64% of recruiters reported a shortage of skilled candidates for available marketing roles. Wanted Analytics recently found that one of the biggest national talent shortages is for marketing manager roles, with only two available candidates per job opening.

Increase in marketers listing skills in content marketing, inbound marketing, and social media on LinkedIn profiles

While recruiter frustrations may indicate a shallow talent pool, LinkedIn tells a different story—the number of U.S.-based marketers who identify themselves as having digital marketing skills is on the rise. Using data tracked by Rand and LinkedIn, we found the following increases of marketing keywords within user profiles.

growth of marketing keywords in linkedin profiles

The number of profiles containing “content marketing” has seen the largest growth, with a 168% increase since 2013. “Social media” has also seen significant growth with a 137% increase. “Social media” appears on a significantly higher volume of profiles than the other keywords, with more than 2.2 million profiles containing some mention of social media. Although “SEO” has not seen as much growth as the other keywords, it still has the second-highest volume with it appearing in 630,717 profiles.

Why is there a growing number of people self-identifying as having the marketing skills recruiters want, yet recruiters think there is a lack of talent?

While there may be a lot of specialists out there, perhaps recruiters are struggling to fill marketing roles due to a lack of generalists or even a lack of specialists with surface-level knowledge of other areas of digital marketing (also known as a T-shaped marketer).

Popular job listings show a need for marketers to diversify their skill set

The data we gathered from LinkedIn confirm this, as the 20 most common digital marketing-related job titles being advertised call for a broad mix of skills.

20 most common marketing job titles

It’s no wonder that marketing manager roles are hard to fill, considering the job ads are looking for proficiency in a wide range of marketing disciplines including social media marketing, SEO, PPC, content marketing, Google Analytics, and digital marketing. Even job descriptions for specialist roles tend to call for skills in other disciplines. A particular role such as SEO Specialist may call for several skills other than SEO, such as PPC, content marketing, and Google Analytics.

Taking a more granular look at job titles, the chart below shows the five most common titles for each search query. One might expect mostly specialist roles to appear here, but there is a high occurrence of generalist positions, such as Digital Marketing Manager and Marketing Manager.

5 most common job titles by search query

Only one job title containing “SEO” cracked the top five. This indicates that SEO knowledge is a desirable skill within other roles, such as general digital marketing and development.

Recruiter was the third most common job title among job listings containing social media keywords, which suggests a need for social media skills in non-marketing roles.

Similar to what we saw with SEO job titles, only one job title specific to PPC (Paid Search Specialist) made it into the top job titles. PPC skills are becoming necessary for more general marketing roles, such as Marketing Manager and Digital Marketing Specialist.

Across all search queries, the most common jobs advertised call for a broad mix of skills. This tells us hiring managers are on the hunt for well-rounded candidates with a diverse range of marketing skills, as opposed to candidates with expertise in one area.

Marketers who cultivate diverse skill sets are better poised to gain an advantage over other job seekers, excel in their job role, and accelerate career growth. Jason Miller says it best in his piece about the new breed hybrid marketer:

future of marketing quote linkedin

Inbound job demand and growth: Most-wanted skills and fastest-growing jobs

Using data from Indeed, we identified which inbound skills have the highest demand and which jobs are seeing the most growth. Social media keywords claim the largest volume of results out of the terms we searched for during June 2015.

number of marketing job listings by keyword

“Social media marketing” or “social media management” appeared the most frequently in the job postings we analyzed, with 46.7% containing these keywords. “PPC” returned the smallest number of results, with only 3.8% of listings containing this term.

Perhaps this is due to social media becoming a more necessary skill across many industries and not only a necessity for marketers (for example, social media’s role in customer service and recruitment). On the other hand, job roles calling for PPC or SEO skills are most likely marketing-focused. The prevalence of social media jobs also may indicate that social media has gained wide acceptance as a necessary part of a marketing strategy. Additionally, social media skills are less valuable compared to other marketing skills, making it cheaper to hire for these positions (we will explore this further in the average salaries section below).

Our search results also included a high volume of jobs containing “digital marketing” and “SEO” keywords, which made up 19.5% and 15.5% respectively. At 5.8%, “content marketing” had the lowest search volume after “PPC.”

Digital marketing, social media, and content marketing experienced the most job growth

While the number of job listings tells us which skills are most in demand today, looking at which jobs are seeing the most growth can give insight into shifting demands.

digital marketing growth on  indeed.com

Digital marketing job listings have seen substantial growth since 2009, when it accounted for less than 0.1% of Indeed.com search results. In January 2015, this number had climbed to nearly 0.3%.

social media job growth on indeed.com

While social media marketing jobs have seen some uneven growth, as of January 2015 more than 0.1% of all job listings on Indeed.com contained the term “social media marketing” or “social media management.” This shows a significant upward trend considering this number was around 0.05% for most of 2014. It’s also worth noting that “social media” is currently ranked No. 10 on Indeed’s list of top job trends.

content marketing job growth on indeed.com

Despite its growth from 0.02% to nearly 0.09% of search volume in the last four years, “content marketing” does not make up a large volume of job postings compared to “digital marketing” or “social media.” In fact, “SEO” has seen a decrease in growth but still constitutes a higher percentage of job listings than content marketing.

SEO, PPC, and Google Analytics job growth has slowed down

On the other hand, search volume on Indeed has either decreased or plateaued for “SEO,” “PPC,” and “Google Analytics.”

seo job growth on indeed.com

As we see in the graph, the volume of “SEO job” listings peaked between 2011 and 2012. This is also around the time content marketing began gaining popularity, thanks to the Panda and Penguin updates. The decrease may be explained by companies moving their marketing budgets away from SEO and toward content or social media positions. However, “SEO” still has a significant amount of job listings, with it appearing in more than 0.2% of job listings on Indeed as of 2015.

ppc job growth on indeed.com

“PPC” has seen the most staggered growth among all the search terms we analyzed, with its peak of nearly 0.1% happening between 2012 and 2013. As of January of this year, search volume was below 0.05% for “PPC.”

google analytics job growth on indeed.com

Despite a lack of growth, the need for this skill remains steady. Between 2008 and 2009, “Google Analytics” job ads saw a huge spike on Indeed. Since then, the search volume has tapered off and plateaued through January 2015.

Most valuable skills are SEO, digital marketing, and Google Analytics

So we know the number of social media, digital marketing, and content marketing jobs are on the rise. But which skills are worth the most? We looked at the average salaries based on keywords and estimates from Indeed and salaries listed in job ads.

national average marketing salaries

Job titles containing “SEO” had an average salary of $102,000. Meanwhile, job titles containing “social media marketing” had an average salary of $51,000. Considering such a large percentage of the job listings we analyzed contained “social media” keywords, there is a much larger pool of jobs; therefore, a lot of entry level social media jobs or internships are probably bringing down the average salary.

Job titles containing “Google Analytics” had the second-highest average salary at $82,000, but this should be taken with a grain of salt considering “Google Analytics” will rarely appear as part of a job title. The chart below, which shows average salaries for jobs containing keywords anywhere in the listing as opposed to only in the title, gives a more accurate idea of how much “Google Analytics” job roles earn on average.national salary averages marketing keywords

Looking at the average salaries based on keywords that appeared anywhere within the job listing (job title, job description, etc.) shows a slightly different picture. Based on this, jobs containing “digital marketing” or “inbound marketing” had the highest average salary of $84,000. “SEO” and “Google Analytics” are tied for second with $76,000 as the average salary.

“Social media marketing” takes the bottom spot with an average salary of $57,000. However, notice that there is a higher average salary for jobs that contain “social media” within the job listing as opposed to jobs that contain “social media” within the title. This suggests that social media skills may be more valuable when combined with other responsibilities and skills, whereas a strictly social media job, such as Social Media Manager or Social Media Specialist, does not earn as much.

Massachusetts, New York, and California have the most career opportunities for inbound marketers

Looking for a new job? Maybe it’s time to pack your bags for Boston.

Massachusetts led the U.S. with the most jobs per capita for digital marketing, content marketing, SEO, and Google Analytics. New York took the top spot for social media jobs per capita, while Utah had the highest concentration of PPC jobs. California ranked in the top three for digital marketing, content marketing, social media, and Google Analytics. Illinois appeared in the top 10 for every term and usually ranked within the top five. Most of the states with the highest job concentrations are in the Northeast, West, and East Coast, with a few exceptions such as Illinois and Minnesota.

But you don’t necessarily have to move to a new state to increase the odds of landing an inbound marketing job. Some unexpected states also made the cut, with Connecticut and Vermont ranking within the top 10 for several keywords.

concentration of digital marketing jobs

marketing jobs per capita

Job listings containing “digital marketing” or “inbound marketing” were most prevalent in Massachusetts, New York, Illinois, and California, which is most likely due to these states being home to major cities where marketing agencies and large brands are headquartered or have a presence. You will notice these four states make an appearance in the top 10 for every other search query and usually rank close to the top of the list.

More surprising to find in the top 10 were smaller states such as Connecticut and Vermont. Many major organizations are headquartered in Connecticut, which may be driving the state’s need for digital marketing talent. Vermont’s high-tech industry growth may explain its high concentration of digital marketing jobs.

content marketing job concentration

per capita content marketing jobs

Although content marketing jobs are growing, there are still a low volume overall of available jobs, as shown by the low jobs per capita compared to most of the other search queries. With more than three jobs per capita, Massachusetts and New York topped the list for the highest concentration of job listings containing “content marketing” or “content strategy.” California and Illinois rank in third and fourth with 2.8 and 2.1 jobs per capita respectively.

seo job concentration

seo jobs per capita

Again, Massachusetts and New York took the top spots, each with more than eight SEO jobs per capita. Utah took third place for the highest concentration of SEO jobs. Surprised to see Utah rank in the top 10? Its inclusion on this list and others may be due to its booming tech startup scene, which has earned the metropolitan areas of Salt Lake City, Provo, and Park City the nickname Silicon Slopes.

social media job concentration

social media jobs per capita

Compared to the other keywords, “social media” sees a much higher concentration of jobs. New York dominates the rankings with nearly 24 social media jobs per capita. The other top contenders of California, Massachusetts, and Illinois all have more than 15 social media jobs per capita.

The numbers at the bottom of this list can give you an idea of how prevalent social media jobs were compared to any other keyword we analyzed. Minnesota’s 12.1 jobs per capita, the lowest ranking state in the top 10 for social media, trumps even the highest ranking state for any other keyword (11.5 digital marketing jobs per capita in Massachusetts).

ppc job concentration

ppc jobs per capita

Due to its low overall number of available jobs, “PPC” sees the lowest jobs per capita out of all the search queries. Utah has the highest concentration of jobs with just two PPC jobs per 100,000 residents. It is also the only state in the top 10 to crack two jobs per capita.

google analytics job concentration

google analytics jobs per capita

Regionally, the Northeast and West dominate the rankings, with the exception of Illinois. Massachusetts and New York are tied for the most Google Analytics job postings, each with nearly five jobs per capita. At more than three jobs per 100,000 residents, California, Illinois, and Colorado round out the top five.

Overall, our findings indicate that none of the marketing disciplines we analyzed are dying career choices, but there is a need to become more than a one-trick pony—or else you’ll risk getting passed up for job opportunities. As the marketing industry evolves, there is a greater need for marketers who “wear many hats” and have competencies across different marketing disciplines. Marketers who develop diverse skill sets can gain a competitive advantage in the job market and achieve greater career growth.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Big Data, Big Problems: 4 Major Link Indexes Compared

Posted by russangular

Given this blog’s readership, chances are good you will spend some time this week looking at backlinks in one of the growing number of link data tools. We know backlinks continue to be one of, if not the most important
parts of Google’s ranking algorithm. We tend to take these link data sets at face value, though, in part because they are all we have. But when your rankings are on the line, is there a better way to get at which data set is the best? How should we go
about assessing these different link indexes like
Moz,
Majestic, Ahrefs and SEMrush for quality? Historically, there have been 4 common approaches to this question of index quality…

  • Breadth: We might choose to look at the number of linking root domains any given service reports. We know
    that referring domains correlates strongly with search rankings, so it makes sense to judge a link index by how many unique domains it has
    discovered and indexed.
  • Depth: We also might choose to look at how deep the web has been crawled, looking more at the total number of URLs
    in the index, rather than the diversity of referring domains.
  • Link Overlap: A more sophisticated approach might count the number of links an index has in common with Google Webmaster
    Tools.
  • Freshness: Finally, we might choose to look at the freshness of the index. What percentage of links in the index are
    still live?

There are a number of really good studies (some newer than others) using these techniques that are worth checking out when you get a chance:

  • BuiltVisible analysis of Moz, Majestic, GWT, Ahrefs and Search Metrics
  • SEOBook comparison of Moz, Majestic, Ahrefs, and Ayima
  • MatthewWoodward
    study of Ahrefs, Majestic, Moz, Raven and SEO Spyglass
  • Marketing Signals analysis of Moz, Majestic, Ahrefs, and GWT
  • RankAbove comparison of Moz, Majestic, Ahrefs and Link Research Tools
  • StoneTemple study of Moz and Majestic

While these are all excellent at addressing the methodologies above, there is a particular limitation with all of them. They miss one of the
most important metrics we need to determine the value of a link index: proportional representation to Google’s link graph
. So here at Angular Marketing, we decided to take a closer look.

Proportional representation to Google Search Console data

So, why is it important to determine proportional representation? Many of the most important and valued metrics we use are built on proportional
models. PageRank, MozRank, CitationFlow and Ahrefs Rank are proportional in nature. The score of any one URL in the data set is relative to the
other URLs in the data set. If the data set is biased, the results are biased.

A Visualization

Link graphs are biased by their crawl prioritization. Because there is no full representation of the Internet, every link graph, even Google’s,
is a biased sample of the web. Imagine for a second that the picture below is of the web. Each dot represents a page on the Internet,
and the dots surrounded by green represent a fictitious index by Google of certain sections of the web.

Of course, Google isn’t the only organization that crawls the web. Other organizations like Moz,
Majestic, Ahrefs, and SEMrush
have their own crawl prioritizations which result in different link indexes.

In the example above, you can see different link providers trying to index the web like Google. Link data provider 1 (purple) does a good job
of building a model that is similar to Google. It isn’t very big, but it is proportional. Link data provider 2 (blue) has a much larger index,
and likely has more links in common with Google that link data provider 1, but it is highly disproportional. So, how would we go about measuring
this proportionality? And which data set is the most proportional to Google?

Methodology

The first step is to determine a measurement of relativity for analysis. Google doesn’t give us very much information about their link graph.
All we have is what is in Google Search Console. The best source we can use is referring domain counts. In particular, we want to look at
what we call
referring domain link pairs. A referring domain link pair would be something like ask.com->mlb.com: 9,444 which means
that ask.com links to mlb.com 9,444 times.

Steps

  1. Determine the root linking domain pairs and values to 100+ sites in Google Search Console
  2. Determine the same for Ahrefs, Moz, Majestic Fresh, Majestic Historic, SEMrush
  3. Compare the referring domain link pairs of each data set to Google, assuming a
    Poisson Distribution
  4. Run simulations of each data set’s performance against each other (ie: Moz vs Maj, Ahrefs vs SEMrush, Moz vs SEMrush, et al.)
  5. Analyze the results

Results

When placed head-to-head, there seem to be some clear winners at first glance. In head-to-head, Moz edges out Ahrefs, but across the board, Moz and Ahrefs fare quite evenly. Moz, Ahrefs and SEMrush seem to be far better than Majestic Fresh and Majestic Historic. Is that really the case? And why?

It turns out there is an inversely proportional relationship between index size and proportional relevancy. This might seem counterintuitive,
shouldn’t the bigger indexes be closer to Google? Not Exactly.

What does this mean?

Each organization has to create a crawl prioritization strategy. When you discover millions of links, you have to prioritize which ones you
might crawl next. Google has a crawl prioritization, so does Moz, Majestic, Ahrefs and SEMrush. There are lots of different things you might
choose to prioritize…

  • You might prioritize link discovery. If you want to build a very large index, you could prioritize crawling pages on sites that
    have historically provided new links.
  • You might prioritize content uniqueness. If you want to build a search engine, you might prioritize finding pages that are unlike
    any you have seen before. You could choose to crawl domains that historically provide unique data and little duplicate content.
  • You might prioritize content freshness. If you want to keep your search engine recent, you might prioritize crawling pages that
    change frequently.
  • You might prioritize content value, crawling the most important URLs first based on the number of inbound links to that page.

Chances are, an organization’s crawl priority will blend some of these features, but it’s difficult to design one exactly like Google. Imagine
for a moment that instead of crawling the web, you want to climb a tree. You have to come up with a tree climbing strategy.

  • You decide to climb the longest branch you see at each intersection.
  • One friend of yours decides to climb the first new branch he reaches, regardless of how long it is.
  • Your other friend decides to climb the first new branch she reaches only if she sees another branch coming off of it.

Despite having different climb strategies, everyone chooses the same first branch, and everyone chooses the same second branch. There are only
so many different options early on.

But as the climbers go further and further along, their choices eventually produce differing results. This is exactly the same for web crawlers
like Google, Moz, Majestic, Ahrefs and SEMrush. The bigger the crawl, the more the crawl prioritization will cause disparities. This is not a
deficiency; this is just the nature of the beast. However, we aren’t completely lost. Once we know how index size is related to disparity, we
can make some inferences about how similar a crawl priority may be to Google.

Unfortunately, we have to be careful in our conclusions. We only have a few data points with which to work, so it is very difficult to be
certain regarding this part of the analysis. In particular, it seems strange that Majestic would get better relative to its index size as it grows,
unless Google holds on to old data (which might be an important discovery in and of itself). It is most likely that at this point we can’t make
this level of conclusion.

So what do we do?

Let’s say you have a list of domains or URLs for which you would like to know their relative values. Your process might look something like
this…

  • Check Open Site Explorer to see if all URLs are in their index. If so, you are looking metrics most likely to be proportional to Google’s link graph.
  • If any of the links do not occur in the index, move to Ahrefs and use their Ahrefs ranking if all you need is a single PageRank-like metric.
  • If any of the links are missing from Ahrefs’s index, or you need something related to trust, move on to Majestic Fresh.
  • Finally, use Majestic Historic for (by leaps and bounds) the largest coverage available.

It is important to point out that the likelihood that all the URLs you want to check are in a single index increases as the accuracy of the metric
decreases. Considering the size of Majestic’s data, you can’t ignore them because you are less likely to get null value answers from their data than
the others. If anything rings true, it is that once again it makes sense to get data
from as many sources as possible. You won’t
get the most proportional data without Moz, the broadest data without Majestic, or everything in-between without Ahrefs.

What about SEMrush? They are making progress, but they don’t publish any relative statistics that would be useful in this particular
case. Maybe we can hope to see more from them soon given their already promising index!

Recommendations for the link graphing industry

All we hear about these days is big data; we almost never hear about good data. I know that the teams at Moz,
Majestic, Ahrefs, SEMrush and others are interested in mimicking Google, but I would love to see some organization stand up against the
allure of
more data in favor of better data—data more like Google’s. It could begin with testing various crawl strategies to see if they produce
a result more similar to that of data shared in Google Search Console. Having the most Google-like data is certainly a crown worth winning.

Credits

Thanks to Diana Carter at Angular for assistance with data acquisition and Andrew Cron with statistical analysis. Thanks also to the representatives from Moz, Majestic, Ahrefs, and SEMrush for answering questions about their indices.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Deconstructing the App Store Rankings Formula with a Little Mad Science

Posted by AlexApptentive

After seeing Rand’s “Mad Science Experiments in SEO” presented at last year’s MozCon, I was inspired to put on the lab coat and goggles and do a few experiments of my own—not in SEO, but in SEO’s up-and-coming younger sister, ASO (app store optimization).

Working with Apptentive to guide enterprise apps and small startup apps alike to increase their discoverability in the app stores, I’ve learned a thing or two about app store optimization and what goes into an app’s ranking. It’s been my personal goal for some time now to pull back the curtains on Google and Apple. Yet, the deeper into the rabbit hole I go, the more untested assumptions I leave in my way.

Hence, I thought it was due time to put some longstanding hypotheses through the gauntlet.

As SEOs, we know how much of an impact a single ranking can mean on a SERP. One tiny rank up or down can make all the difference when it comes to your website’s traffic—and revenue.

In the world of apps, ranking is just as important when it comes to standing out in a sea of more than 1.3 million apps. Apptentive’s recent mobile consumer survey shed a little more light this claim, revealing that nearly half of all mobile app users identified browsing the app store charts and search results (the placement on either of which depends on rankings) as a preferred method for finding new apps in the app stores. Simply put, better rankings mean more downloads and easier discovery.

Like Google and Bing, the two leading app stores (the Apple App Store and Google Play) have a complex and highly guarded algorithms for determining rankings for both keyword-based app store searches and composite top charts.

Unlike SEO, however, very little research and theory has been conducted around what goes into these rankings.

Until now, that is.

Over the course of five studies analyzing various publicly available data points for a cross-section of the top 500 iOS (U.S. Apple App Store) and the top 500 Android (U.S. Google Play) apps, I’ll attempt to set the record straight with a little myth-busting around ASO. In the process, I hope to assess and quantify any perceived correlations between app store ranks, ranking volatility, and a few of the factors commonly thought of as influential to an app’s ranking.

But first, a little context

Image credit: Josh Tuininga, Apptentive

Both the Apple App Store and Google Play have roughly 1.3 million apps each, and both stores feature a similar breakdown by app category. Apps ranking in the two stores should, theoretically, be on a fairly level playing field in terms of search volume and competition.

Of these apps, nearly two-thirds have not received a single rating and 99% are considered unprofitable. These studies, therefore, single out the rare exceptions to the rule—the top 500 ranked apps in each store.

While neither Apple nor Google have revealed specifics about how they calculate search rankings, it is generally accepted that both app store algorithms factor in:

  • Average app store rating
  • Rating/review volume
  • Download and install counts
  • Uninstalls (what retention and churn look like for the app)
  • App usage statistics (how engaged an app’s users are and how frequently they launch the app)
  • Growth trends weighted toward recency (how daily download counts changed over time and how today’s ratings compare to last week’s)
  • Keyword density of the app’s landing page (Ian did a great job covering this factor in a previous Moz post)

I’ve simplified this formula to a function highlighting the four elements with sufficient data (or at least proxy data) for our analysis:

Ranking = fn(Rating, Rating Count, Installs, Trends)

Of course, right now, this generalized function doesn’t say much. Over the next five studies, however, we’ll revisit this function before ultimately attempting to compare the weights of each of these four variables on app store rankings.

(For the purpose of brevity, I’ll stop here with the assumptions, but I’ve gone into far greater depth into how I’ve reached these conclusions in a 55-page report on app store rankings.)

Now, for the Mad Science.

Study #1: App-les to app-les app store ranking volatility

The first, and most straight forward of the five studies involves tracking daily movement in app store rankings across iOS and Android versions of the same apps to determine any trends of differences between ranking volatility in the two stores.

I went with a small sample of five apps for this study, the only criteria for which were that:

  • They were all apps I actively use (a criterion for coming up with the five apps but not one that influences rank in the U.S. app stores)
  • They were ranked in the top 500 (but not the top 25, as I assumed app store rankings would be stickier at the top—an assumption I’ll test in study #2)
  • They had an almost identical version of the app in both Google Play and the App Store, meaning they should (theoretically) rank similarly
  • They covered a spectrum of app categories

The apps I ultimately chose were Lyft, Venmo, Duolingo, Chase Mobile, and LinkedIn. These five apps represent the travel, finance, education banking, and social networking categories.

Hypothesis

Going into this analysis, I predicted slightly more volatility in Apple App Store rankings, based on two statistics:

Both of these assumptions will be tested in later analysis.

Results

7-Day App Store Ranking Volatility in the App Store and Google Play

Among these five apps, Google Play rankings were, indeed, significantly less volatile than App Store rankings. Among the 35 data points recorded, rankings within Google Play moved by as much as 23 positions/ranks per day while App Store rankings moved up to 89 positions/ranks. The standard deviation of ranking volatility in the App Store was, furthermore, 4.45 times greater than that of Google Play.

Of course, the same apps varied fairly dramatically in their rankings in the two app stores, so I then standardized the ranking volatility in terms of percent change to control for the effect of numeric rank on volatility. When cast in this light, App Store rankings changed by as much as 72% within a 24-hour period while Google Play rankings changed by no more than 9%.

Also of note, daily rankings tended to move in the same direction across the two app stores approximately two-thirds of the time, suggesting that the two stores, and their customers, may have more in common than we think.

Study #2: App store ranking volatility across the top charts

Testing the assumption implicit in standardizing the data in study No. 1, this one was designed to see if app store ranking volatility is correlated with an app’s current rank. The sample for this study consisted of the top 500 ranked apps in both Google Play and the App Store, with special attention given to those on both ends of the spectrum (ranks 1–100 and 401–500).

Hypothesis

I anticipated rankings to be more volatile the higher an app is ranked—meaning an app ranked No. 450 should be able to move more ranks in any given day than an app ranked No. 50. This hypothesis is based on the assumption that higher ranked apps have more installs, active users, and ratings, and that it would take a large margin to produce a noticeable shift in any of these factors.

Results

App Store Ranking Volatility of Top 500 Apps

One look at the chart above shows that apps in both stores have increasingly more volatile rankings (based on how many ranks they moved in the last 24 hours) the lower on the list they’re ranked.

This is particularly true when comparing either end of the spectrum—with a seemingly straight volatility line among Google Play’s Top 100 apps and very few blips within the App Store’s Top 100. Compare this section to the lower end, ranks 401–)500, where both stores experience much more turbulence in their rankings. Across the gamut, I found a 24% correlation between rank and ranking volatility in the Play Store and 28% correlation in the App Store.

To put this into perspective, the average app in Google Play’s 401–)500 ranks moved 12.1 ranks in the last 24 hours while the average app in the Top 100 moved a mere 1.4 ranks. For the App Store, these numbers were 64.28 and 11.26, making slightly lower-ranked apps more than five times as volatile as the highest ranked apps. (I say slightly as these “lower-ranked” apps are still ranked higher than 99.96% of all apps.)

The relationship between rank and volatility is pretty consistent across the App Store charts, while rank has a much greater impact on volatility at the lower end of Google Play charts (ranks 1-100 have a 35% correlation) than it does at the upper end (ranks 401-500 have a 1% correlation).

Study #3: App store rankings across the stars

The next study looks at the relationship between rank and star ratings to determine any trends that set the top chart apps apart from the rest and explore any ties to app store ranking volatility.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

As discussed in the introduction, this study relates directly to one of the factors commonly accepted as influential to app store rankings: average rating.

Getting started, I hypothesized that higher ranks generally correspond to higher ratings, cementing the role of star ratings in the ranking algorithm.

As far as volatility goes, I did not anticipate average rating to play a role in app store ranking volatility, as I saw no reason for higher rated apps to be less volatile than lower rated apps, or vice versa. Instead, I believed volatility to be tied to rating volume (as we’ll explore in our last study).

Results

Average App Store Ratings of Top Apps

The chart above plots the top 100 ranked apps in either store with their average rating (both historic and current, for App Store apps). If it looks a little chaotic, it’s just one indicator of the complexity of ranking algorithm in Google Play and the App Store.

If our hypothesis was correct, we’d see a downward trend in ratings. We’d expect to see the No. 1 ranked app with a significantly higher rating than the No. 100 ranked app. Yet, in neither store is this the case. Instead, we get a seemingly random plot with no obvious trends that jump off the chart.

A closer examination, in tandem with what we already know about the app stores, reveals two other interesting points:

  1. The average star rating of the top 100 apps is significantly higher than that of the average app. Across the top charts, the average rating of a top 100 Android app was 4.319 and the average top iOS app was 3.935. These ratings are 0.32 and 0.27 points, respectively, above the average rating of all rated apps in either store. The averages across apps in the 401–)500 ranks approximately split the difference between the ratings of the top ranked apps and the ratings of the average app.
  2. The rating distribution of top apps in Google Play was considerably more compact than the distribution of top iOS apps. The standard deviation of ratings in the Apple App Store top chart was over 2.5 times greater than that of the Google Play top chart, likely meaning that ratings are more heavily weighted in Google Play’s algorithm.

App Store Ranking Volatility and Average Rating

Looking next at the relationship between ratings and app store ranking volatility reveals a -15% correlation that is consistent across both app stores; meaning the higher an app is rated, the less its rank it likely to move in a 24-hour period. The exception to this rule is the Apple App Store’s calculation of an app’s current rating, for which I did not find a statistically significant correlation.

Study #4: App store rankings across versions

This next study looks at the relationship between the age of an app’s current version, its rank and its ranking volatility.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

In alteration of the above function, I’m using the age of a current app’s version as a proxy (albeit not a very good one) for trends in app store ratings and app quality over time.

Making the assumptions that (a) apps that are updated more frequently are of higher quality and (b) each new update inspires a new wave of installs and ratings, I’m hypothesizing that the older the age of an app’s current version, the lower it will be ranked and the less volatile its rank will be.

Results

How update frequency correlates with app store rank

The first and possibly most important finding is that apps across the top charts in both Google Play and the App Store are updated remarkably often as compared to the average app.

At the time of conducting the study, the current version of the average iOS app on the top chart was only 28 days old; the current version of the average Android app was 38 days old.

As hypothesized, the age of the current version is negatively correlated with the app’s rank, with a 13% correlation in Google Play and a 10% correlation in the App Store.

How update frequency correlates with app store ranking volatility

The next part of the study maps the age of the current app version to its app store ranking volatility, finding that recently updated Android apps have less volatile rankings (correlation: 8.7%) while recently updated iOS apps have more volatile rankings (correlation: -3%).

Study #5: App store rankings across monthly active users

In the final study, I wanted to examine the role of an app’s popularity on its ranking. In an ideal world, popularity would be measured by an app’s monthly active users (MAUs), but since few mobile app developers have released this information, I’ve settled for two publicly available proxies: Rating Count and Installs.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

For the same reasons indicated in the second study, I anticipated that more popular apps (e.g., apps with more ratings and more installs) would be higher ranked and less volatile in rank. This, again, takes into consideration that it takes more of a shift to produce a noticeable impact in average rating or any of the other commonly accepted influencers of an app’s ranking.

Results

Apps with more ratings and reviews typically rank higher

The first finding leaps straight off of the chart above: Android apps have been rated more times than iOS apps, 15.8x more, in fact.

The average app in Google Play’s Top 100 had a whopping 3.1 million ratings while the average app in the Apple App Store’s Top 100 had 196,000 ratings. In contrast, apps in the 401–)500 ranks (still tremendously successful apps in the 99.96 percentile of all apps) tended to have between one-tenth (Android) and one-fifth (iOS) of the ratings count as that of those apps in the top 100 ranks.

Considering that almost two-thirds of apps don’t have a single rating, reaching rating counts this high is a huge feat, and a very strong indicator of the influence of rating count in the app store ranking algorithms.

To even out the playing field a bit and help us visualize any correlation between ratings and rankings (and to give more credit to the still-staggering 196k ratings for the average top ranked iOS app), I’ve applied a logarithmic scale to the chart above:

The relationship between app store ratings and rankings in the top 100 apps

From this chart, we can see a correlation between ratings and rankings, such that apps with more ratings tend to rank higher. This equates to a 29% correlation in the App Store and a 40% correlation in Google Play.

Apps with more ratings typically experience less app store ranking volatility

Next up, I looked at how ratings count influenced app store ranking volatility, finding that apps with more ratings had less volatile rankings in the Apple App Store (correlation: 17%). No conclusive evidence was found within the Top 100 Google Play apps.

Apps with more installs and active users tend to rank higher in the app stores

And last but not least, I looked at install counts as an additional proxy for MAUs. (Sadly, this is a statistic only listed in Google Play. so any resulting conclusions are applicable only to Android apps.)

Among the top 100 Android apps, this last study found that installs were heavily correlated with ranks (correlation: -35.5%), meaning that apps with more installs are likely to rank higher in Google Play. Android apps with more installs also tended to have less volatile app store rankings, with a correlation of -16.5%.

Unfortunately, these numbers are slightly skewed as Google Play only provides install counts in broad ranges (e.g., 500k–)1M). For each app, I took the low end of the range, meaning we can likely expect the correlation to be a little stronger since the low end was further away from the midpoint for apps with more installs.

Summary

To make a long post ever so slightly shorter, here are the nuts and bolts unearthed in these five mad science studies in app store optimization:

  1. Across the top charts, Apple App Store rankings are 4.45x more volatile than those of Google Play
  2. Rankings become increasingly volatile the lower an app is ranked. This is particularly true across the Apple App Store’s top charts.
  3. In both stores, higher ranked apps tend to have an app store ratings count that far exceeds that of the average app.
  4. Ratings appear to matter more to the Google Play algorithm, especially as the Apple App Store top charts experience a much wider ratings distribution than that of Google Play’s top charts.
  5. The higher an app is rated, the less volatile its rankings are.
  6. The 100 highest ranked apps in either store are updated much more frequently than the average app, and apps with older current versions are correlated with lower ratings.
  7. An app’s update frequency is negatively correlated with Google Play’s ranking volatility but positively correlated with ranking volatility in the App Store. This likely due to how Apple weighs an app’s most recent ratings and reviews.
  8. The highest ranked Google Play apps receive, on average, 15.8x more ratings than the highest ranked App Store apps.
  9. In both stores, apps that fall under the 401–500 ranks receive, on average, 10–20% of the rating volume seen by apps in the top 100.
  10. Rating volume and, by extension, installs or MAUs, is perhaps the best indicator of ranks, with a 29–40% correlation between the two.

Revisiting our first (albeit oversimplified) guess at the app stores’ ranking algorithm gives us this loosely defined function:

Ranking = fn(Rating, Rating Count, Installs, Trends)

I’d now re-write the function into a formula by weighing each of these four factors, where a, b, c, & d are unknown multipliers, or weights:

Ranking = (Rating * a) + (Rating Count * b) + (Installs * c) + (Trends * d)

These five studies on ASO shed a little more light on these multipliers, showing Rating Count to have the strongest correlation with rank, followed closely by Installs, in either app store.

It’s with the other two factors—rating and trends—that the two stores show the greatest discrepancy. I’d hazard a guess to say that the App Store prioritizes growth trends over ratings, given the importance it places on an app’s current version and the wide distribution of ratings across the top charts. Google Play, on the other hand, seems to favor ratings, with an unwritten rule that apps just about have to have at least four stars to make the top 100 ranks.

Thus, we conclude our mad science with this final glimpse into what it takes to make the top charts in either store:

Weight of factors in the Apple App Store ranking algorithm

Rating Count > Installs > Trends > Rating

Weight of factors in the Google Play ranking algorithm

Rating Count > Installs > Rating > Trends


Again, we’re oversimplifying for the sake of keeping this post to a mere 3,000 words, but additional factors including keyword density and in-app engagement statistics continue to be strong indicators of ranks. They simply lie outside the scope of these studies.

I hope you found this deep-dive both helpful and interesting. Moving forward, I also hope to see ASOs conducting the same experiments that have brought SEO to the center stage, and encourage you to enhance or refute these findings with your own ASO mad science experiments.

Please share your thoughts in the comments below, and let’s deconstruct the ranking formula together, one experiment at a time.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Exposing The Generational Content Gap: Three Ways to Reach Multiple Generations

Posted by AndreaLehr

With more people of all ages online than ever before, marketers must create content that resonates with multiple generations. Successful marketers realize that each generation has unique expectations, values and experiences that influence consumer behaviors, and that offering your audience content that reflects their shared interests is a powerful way to connect with them and inspire them to take action.

We’re in the midst of a generational shift, with
Millennials expected to surpass Baby Boomers in 2015 as the largest living generation. In order to be competitive, marketers need to realize where key distinctions and similarities lie in terms of how these different generations consume content and share it with with others.

To better understand the habits of each generation,
BuzzStream and Fractl surveyed over 1,200 individuals and segmented their responses into three groups: Millennials (born between 1977–1995), Generation X (born between 1965–1976), and Baby Boomers (born between 1946–1964). [Eds note: The official breakdown for each group is as follows: Millennials (1981-1997), Generation X (1965-1980), and Boomers (1946-1964)]

Our survey asked them to identify their preferences for over 15 different content types while also noting their opinions on long-form versus short-form content and different genres (e.g., politics, technology, and entertainment).

We compared their responses and found similar habits and unique trends among all three generations.

Here’s our breakdown of the three key takeaways you can use to elevate your future campaigns:

1. Baby Boomers are consuming the most content

However, they have a tendency to enjoy it earlier in the day than Gen Xers and Millennials.

Although we found striking similarities between the younger generations, the oldest generation distinguished itself by consuming the most content. Over 25 percent of Baby Boomers consume 20 or more hours of content each week. Additional findings:

  • Baby Boomers also hold a strong lead in the 15–20 hours bracket at 17 percent, edging out Gen Xers and Millennials at 12 and 11 percent, respectively
  • A majority of Gen Xers and Millennials—just over 22 percent each—consume between 5 and 10 hours per week
  • Less than 10 percent of Gen Xers consume less than five hours of content a week—the lowest of all three groups

We also compared the times of day that each generation enjoys consuming content. The results show that most of our respondents—over 30 percent— consume content between 8 p.m. and midnight. However, there are similar trends that distinguish the oldest generation from the younger ones:

  • Baby Boomers consume a majority of their content in the morning. Nearly 40 percent of respondents are online between 5 a.m. and noon.
  • The least popular time for most respondents to engage with content online is late at night, between midnight and 5 a.m., earning less than 10 percent from each generation
  • Gen X is the only generation to dip below 10 percent in the three U.S. time zones: 5 a.m. to 9 a.m., 6 to 8 p.m., and midnight to 5 a.m.

When Do We Consume Content

When it comes to which device each generation uses to consume content, laptops are the most common, followed by desktops. The biggest distinction is in mobile usage: Over 50 percent of respondents who use their mobile as their primary device for content consumption are Millennials. Other results reveal:

  • Not only do Baby Boomers use laptops the most (43 percent), but they also use their tablets the most. (40 percent of all primary tablet users are Baby Boomers).
  • Over 25 percent of Millennials use a mobile device as their primary source for content
  • Gen Xers are the least active tablet users, with less than 8 percent of respondents using it as their primary device

Device To Consume Content2. Preferred content types and lengths span all three generations

One thing every generation agrees on is the type of content they enjoy seeing online. Our results reveal that the top four content types— blog articles, images, comments, and eBooks—are exactly the same for Baby Boomers, Gen Xers, and Millennials. Additional comparisons indicate:

  • The least preferred content types—flipbooks, SlideShares, webinars, and white papers—are the same across generations, too (although not in the exact same order)
  • Surprisingly, Gen Xers and Millennials list quizzes as one of their five least favorite content types

Most Consumed Content Type

All three generations also agree on ideal content length, around 300 words. Further analysis reveals:

  • Baby Boomers have the highest preference for articles under 200 words, at 18 percent
  • Gen Xers have a strong preference for articles over 500 words compared to other generations. Over 20 percent of respondents favor long-form articles, while only 15 percent of Baby Boomers and Millennials share the same sentiment.
  • Gen Xers also prefer short articles the least, with less than 10 percent preferring articles under 200 words

Content Length PreferencesHowever, in regards to verticals or genres, where they consume their content, each generation has their own unique preference:

  • Baby Boomers have a comfortable lead in world news and politics, at 18 percent and 12 percent, respectively
  • Millennials hold a strong lead in technology, at 18 percent, while Baby Boomers come in at 10 percent in the same category
  • Gen Xers fall between Millennials and Baby Boomers in most verticals, although they have slight leads in personal finance, parenting, and healthy living
  • Although entertainment is the top genre for each generation, Millennials and Baby Boomers prefer it slightly more than than Gen Xers do

Favorite Content Genres

3. Facebook is the preferred content sharing platform across all three generations

Facebook remains king in terms of content sharing, and is used by about 60 percent of respondents in each generation studied. Surprisingly, YouTube came in second, followed by Twitter, Google+, and LinkedIn, respectively. Additional findings:

  • Baby Boomers share on Facebook the most, edging out Millennials by only a fraction of a percent
  • Although Gen Xers use Facebook slightly less than other generations, they lead in both YouTube and Twitter, at 15 percent and 10 percent, respectively
  • Google+ is most popular with Baby Boomers, at 8 percent, nearly double that of both Gen Xers and Millennials

Preferred Social PlatformAlthough a majority of each generation is sharing content on Facebook, the type of content they are sharing, especially visuals, varies by each age group. The oldest generation prefers more traditional content, such as images and videos. Millennials prefer newer content types, such as memes and GIFs, while Gen X predictably falls in between the two generations in all categories except SlideShares. Other findings:

  • The most popular content type for Baby Boomers is video, at 27 percent
  • Parallax is the least popular type for every generation, earning 1 percent or less in each age group
  • Millennials share memes the most, while less than 10 percent of Baby Boomers share similar content

Most Shared Visual ContentMarketing to several generations can be challenging, given the different values and ideas that resonate with each group. With the number of online content consumers growing daily, it’s essential for marketers to understand the specific types of content that each of their audiences connect with, and align it with their content marketing strategy accordingly.

Although there is no one-size-fits-all campaign, successful marketers can create content that multiple generations will want to share. If you feel you need more information getting started, you can review this deck of additional insights, which includes the preferred video length and weekend consuming habits of each generation discussed in this post.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

How Much Has Link Building Changed in Recent Years?

Posted by Paddy_Moogan

I get asked this question a lot. It’s mainly asked by people who are considering buying my link building book and want to know whether it’s still up to date. This is understandable given that the first edition was published in February 2013 and our industry has a deserved reputation for always changing.

I find myself giving the same answer, even though I’ve been asked it probably dozens of times in the last two years—”not that much”. I don’t think this is solely due to the book itself standing the test of time, although I’ll happily take a bit of credit for that 🙂 I think it’s more a sign of our industry as a whole not changing as much as we’d like to think.

I started to question myself and if I was right and honestly, it’s one of the reasons it has taken me over two years to release the second edition of the book.

So I posed this question to a group of friends not so long ago, some via email and some via a Facebook group. I was expecting to be called out by many of them because my position was that in reality, it hasn’t actually changed that much. The thing is, many of them agreed and the conversations ended with a pretty long thread with lots of insights. In this post, I’d like to share some of them, share what my position is and talk about what actually has changed.

My personal view

Link building hasn’t changed as much we think it has.

The core principles of link building haven’t changed. The signals around link building have changed, but mainly around new machine learning developments that have indirectly affected what we do. One thing that has definitely changed is the mindset of SEOs (and now clients) towards link building.

I think the last big change to link building came in April 2012 when Penguin rolled out. This genuinely did change our industry and put to bed a few techniques that should never have worked so well in the first place.

Since then, we’ve seen some things change, but the core principles haven’t changed if you want to build a business that will be around for years to come and not run the risk of being hit by a link related Google update. For me, these principles are quite simple:

  • You need to deserve links – either an asset you create or your product
  • You need to put this asset in front of a relevant audience who have the ability to share it
  • You need consistency – one new asset every year is unlikely to cut it
  • Anything that scales is at risk

For me, the move towards user data driving search results + machine learning has been the biggest change we’ve seen in recent years and it’s still going.

Let’s dive a bit deeper into all of this and I’ll talk about how this relates to link building.

The typical mindset for building links has changed

I think that most SEOs are coming round to the idea that you can’t get away with building low quality links any more, not if you want to build a sustainable, long-term business. Spammy link building still works in the short-term and I think it always will, but it’s much harder than it used to be to sustain websites that are built on spam. The approach is more “churn and burn” and spammers are happy to churn through lots of domains and just make a small profit on each one before moving onto another.

For everyone else, it’s all about the long-term and not putting client websites at risk.

This has led to many SEOs embracing different forms of link building and generally starting to use content as an asset when it comes to attracting links. A big part of me feels that it was actually Penguin in 2012 that drove the rise of content marketing amongst SEOs, but that’s a post for another day…! For today though, this goes some way towards explain the trend we see below.

Slowly but surely, I’m seeing clients come to my company already knowing that low quality link building isn’t what they want. It’s taken a few years after Penguin for it to filter down to client / business owner level, but it’s definitely happening. This is a good thing but unfortunately, the main reason for this is that most of them have been burnt in the past by SEO companies who have built low quality links without giving thought to building good quality ones too.

I have no doubt that it’s this change in mindset which has led to trends like this:

The thing is, I don’t think this was by choice.

Let’s be honest. A lot of us used the kind of link building tactics that Google no longer like because they worked. I don’t think many SEOs were under the illusion that it was genuinely high quality stuff, but it worked and it was far less risky to do than it is today. Unless you were super-spammy, the low-quality links just worked.

Fast forward to a post-Penguin world, things are far more risky. For me, it’s because of this that we see the trends like the above. As an industry, we had the easiest link building methods taken away from us and we’re left with fewer options. One of the main options is content marketing which, if you do it right, can lead to good quality links and importantly, the types of links you won’t be removing in the future. Get it wrong and you’ll lose budget and lose the trust if your boss or client in the power of content when it comes to link building.

There are still plenty of other methods to build links and sometimes we can forget this. Just look at this epic list from Jon Cooper. Even with this many tactics still available to us, it’s hard work. Way harder than it used to be.

My summary here is that as an industry, our mindset has shifted but it certainly wasn’t a voluntary shift. If the tactics that Penguin targeted still worked today, we’d still be using them.

A few other opinions…

I definitely think too many people want the next easy win. As someone surfing the edge of what Google is bringing our way, here’s my general take—SEO, in broad strokes, is changing a lot, *but* any given change is more and more niche and impacts fewer people. What we’re seeing isn’t radical, sweeping changes that impact everyone, but a sort of modularization of SEO, where we each have to be aware of what impacts our given industries, verticals, etc.”

Dr. Pete

 

I don’t feel that techniques for acquiring links have changed that much. You can either earn them through content and outreach or you can just buy them. What has changed is the awareness of “link building” outside of the SEO community. This makes link building / content marketing much harder when pitching to journalists and even more difficult when pitching to bloggers.

“Link building has to be more integrated with other channels and struggles to work in its own environment unless supported by brand, PR and social. Having other channels supporting your link development efforts also creates greater search signals and more opportunity to reach a bigger audience which will drive a greater ROI.

Carl Hendy

 

SEO has grown up in terms of more mature staff and SEOs becoming more ingrained into businesses so there is a smarter (less pressure) approach. At the same time, SEO has become more integrated into marketing and has made marketing teams and decision makers more intelligent in strategies and not pushing for the quick win. I’m also seeing that companies who used to rely on SEO and building links have gone through IPOs and the need to build 1000s of links per quarter has rightly reduced.

Danny Denhard

Signals that surround link building have changed

There is no question about this one in my mind. I actually wrote about this last year in my previous blog post where I talked about signals such as anchor text and deep links changing over time.

Many of the people I asked felt the same, here are some quotes from them, split out by the types of signal.

Domain level link metrics

I think domain level links have become increasingly important compared with page level factors, i.e. you can get a whole site ranking well off the back of one insanely strong page, even with sub-optimal PageRank flow from that page to the rest of the site.

Phil Nottingham

I’d agree with Phil here and this is what I was getting at in my previous post on how I feel “deep links” will matter less over time. It’s not just about domain level links here, it’s just as much about the additional signals available for Google to use (more on that later).

Anchor text

I’ve never liked anchor text as a link signal. I mean, who actually uses exact match commercial keywords as anchor text on the web?

SEOs. 🙂

Sure there will be natural links like this, but honestly, I struggle with the idea that it took Google so long to start turning down the dial on commercial anchor text as a ranking signal. They are starting to turn it down though, slowly but surely. Don’t get me wrong, it still matters and it still works. But like pure link spam, the barrier is a lot more lower now in terms what of constitutes too much.

Rand feels that they matter more than we’d expect and I’d mostly agree with this statement:

Exact match anchor text links still have more power than you’d expect—I think Google still hasn’t perfectly sorted what is “brand” or “branded query” from generics (i.e. they want to start ranking a new startup like meldhome.com for “Meld” if the site/brand gets popular, but they can’t quite tell the difference between that and https://moz.com/learn/seo/redirection getting a few manipulative links that say “redirect”)

Rand Fishkin

What I do struggle with though, is that Google still haven’t figured this out and that short-term, commercial anchor text spam is still so effective. Even for a short burst of time.

I don’t think link building as a concept has changed loads—but I think links as a signal have, mainly because of filters and penalties but I don’t see anywhere near the same level of impact from coverage anymore, even against 18 months ago.

Paul Rogers

New signals have been introduced

It isn’t just about established signals changing though, there are new signals too and I personally feel that this is where we’ve seen the most change in Google algorithms in recent years—going all the way back to Panda in 2011.

With Panda, we saw a new level of machine learning where it almost felt like Google had found a way of incorporating human reaction / feelings into their algorithms. They could then run this against a website and answer questions like the ones included in this post. Things such as:

  • “Would you be comfortable giving your credit card information to this site?”
  • “Does this article contain insightful analysis or interesting information that is beyond obvious?”
  • “Are the pages produced with great care and attention to detail vs. less attention to detail?”

It is a touch scary that Google was able to run machine learning against answers to questions like this and write an algorithm to predict the answers for any given page on the web. They have though and this was four years ago now.

Since then, they’ve made various moves to utilize machine learning and AI to build out new products and improve their search results. For me, this was one of the biggest and went pretty unnoticed by our industry. Well, until Hummingbird came along I feel pretty sure that we have Ray Kurzweil to thank for at least some of that.

There seems to be more weight on theme/topic related to sites, though it’s hard to tell if this is mostly link based or more user/usage data based. Google is doing a good job of ranking sites and pages that don’t earn the most links but do provide the most relevant/best answer. I have a feeling they use some combination of signals to say “people who perform searches like this seem to eventually wind up on this website—let’s rank it.” One of my favorite examples is the Audubon Society ranking for all sorts of birding-related searches with very poor keyword targeting, not great links, etc. I think user behavior patterns are stronger in the algo than they’ve ever been.

– Rand Fishkin

Leading on from what Rand has said, it’s becoming more and more common to see search results that just don’t make sense if you look at the link metrics—but are a good result.

For me, the move towards user data driving search results + machine learning advanced has been the biggest change we’ve seen in recent years and it’s still going.

Edit: since drafting this post, Tom Anthony released this excellent blog post on his views on the future of search and the shift to data-driven results. I’d recommend reading that as it approaches this whole area from a different perspective and I feel that an off-shoot of what Tom is talking about is the impact on link building.

You may be asking at this point, what does machine learning have to do with link building?

Everything. Because as strong as links are as a ranking signal, Google want more signals and user signals are far, far harder to manipulate than established link signals. Yes it can be done—I’ve seen it happen. There have even been a few public tests done. But it’s very hard to scale and I’d venture a guess that only the top 1% of spammers are capable of doing it, let alone maintaining it for a long period of time. When I think about the process for manipulation here, I actually think we go a step beyond spammers towards hackers and more cut and dry illegal activity.

For link building, this means that traditional methods of manipulating signals are going to become less and less effective as these user signals become stronger. For us as link builders, it means we can’t keep searching for that silver bullet or the next method of scaling link building just for an easy win. The fact is that scalable link building is always going to be at risk from penalization from Google—I don’t really want to live a life where I’m always worried about my clients being hit by the next update. Even if Google doesn’t catch up with a certain method, machine learning and user data mean that these methods may naturally become less effective and cost efficient over time.

There are of course other things such as social signals that have come into play. I certainly don’t feel like these are a strong ranking factor yet, but with deals like this one between Google and Twitter being signed, I wouldn’t be surprised if that ever-growing dataset is used at some point in organic results. The one advantage that Twitter has over Google is it’s breaking news freshness. Twitter is still way quicker at breaking news than Google is—140 characters in a tweet is far quicker than Google News! Google know this which is why I feel they’ve pulled this partnership back into existence after a couple of years apart.

There is another important point to remember here and it’s nicely summarised by Dr. Pete:

At the same time, as new signals are introduced, these are layers not replacements. People hear social signals or user signals or authorship and want it to be the link-killer, because they already fucked up link-building, but these are just layers on top of on-page and links and all of the other layers. As each layer is added, it can verify the layers that came before it and what you need isn’t the magic signal but a combination of signals that generally matches what Google expects to see from real, strong entities. So, links still matter, but they matter in concert with other things, which basically means it’s getting more complicated and, frankly, a bit harder. Of course, on one wants to hear that.”

– Dr. Pete

The core principles have not changed

This is the crux of everything for me. With all the changes listed above, the key is that the core principles around link building haven’t changed. I could even argue that Penguin didn’t change the core principles because the techniques that Penguin targeted should never have worked in the first place. I won’t argue this too much though because even Google advised website owners to build directory links at one time.

You need an asset

You need to give someone a reason to link to you. Many won’t do it out of the goodness of their heart! One of the most effective ways to do this is to develop a content asset and use this as your reason to make people care. Once you’ve made someone care, they’re more likely to share the content or link to it from somewhere.

You need to promote that asset to the right audience

I really dislike the stance that some marketers take when it comes to content promotion—build great content and links will come.

No. Sorry but for the vast majority of us, that’s simply not true. The exceptions are people that sky dive from space or have huge existing audiences to leverage.

You simply have to spend time promoting your content or your asset for it to get shares and links. It is hard work and sometimes you can spend a long time on it and get little return, but it’s important to keep working at until you’re at a point where you have two things:

  • A big enough audience where you can almost guarantee at least some traffic to your new content along with some shares
  • Enough strong relationships with relevant websites who you can speak to when new content is published and stand a good chance of them linking to it

Getting to this point is hard—but that’s kind of the point. There are various hacks you can use along the way but it will take time to get right.

You need consistency

Leading on from the previous point. It takes time and hard work to get links to your content—the types of links that stand the test of time and you’re not going to be removing in 12 months time anyway! This means that you need to keep pushing content out and getting better each and every time. This isn’t to say you should just churn content out for the sake of it, far from it. I am saying that with each piece of content you create, you will learn to do at least one thing better the next time. Try to give yourself the leverage to do this.

Anything scalable is at risk

Scalable link building is exactly what Google has been trying to crack down on for the last few years. Penguin was the biggest move and hit some of the most scalable tactics we had at our disposal. When you scale something, you often lose some level of quality, which is exactly what Google doesn’t want when it comes to links. If you’re still relying on tactics that could fall into the scalable category, I think you need to be very careful and just look at the trend in the types of links Google has been penalizing to understand why.

The part Google plays in this

To finish up, I want to briefly talk about the part that Google plays in all of this and shaping the future they want for the web.

I’ve always tried to steer clear of arguments involving the idea that Google is actively pushing FUD into the community. I’ve preferred to concentrate more on things I can actually influence and change with my clients rather than what Google is telling us all to do.

However, for the purposes of this post, I want to talk about it.

General paranoia has increased. My bet is there are some companies out there carrying out zero specific linkbuilding activity through worry.

Dan Barker

Dan’s point is a very fair one and just a day or two after reading this in an email, I came across a page related to a client’s target audience that said:

“We are not publishing guest posts on SITE NAME any more. All previous guest posts are now deleted. For more information, see www.mattcutts.com/blog/guest-blogging/“.

I’ve reworded this as to not reveal the name of the site, but you get the point.

This is silly. Honestly, so silly. They are a good site, publish good content, and had good editorial standards. Yet they have ignored all of their own policies, hard work, and objectives to follow a blog post from Matt. I’m 100% confident that it wasn’t sites like this one that Matt was talking about in this blog post.

This is, of course, from the publishers’ angle rather than the link builders’ angle, but it does go to show the effect that statements from Google can have. Google know this so it does make sense for them to push out messages that make their jobs easier and suit their own objectives—why wouldn’t they? In a similar way, what did they do when they were struggling to classify at scale which links are bad vs. good and they didn’t have a big enough web spam team? They got us to do it for them 🙂

I’m mostly joking here, but you see the point.

The most recent infamous mobilegeddon update, discussed here by Dr. Pete is another example of Google pushing out messages that ultimately scared a lot of people into action. Although to be fair, I think that despite the apparent small impact so far, the broad message from Google is a very serious one.

Because of this, I think we need to remember that Google does have their own agenda and many shareholders to keep happy. I’m not in the camp of believing everything that Google puts out is FUD, but I’m much more sensitive and questioning of the messages now than I’ve ever been.

What do you think? I’d love to hear your feedback and thoughts in the comments.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Should I Rebrand and Redirect My Site? Should I Consolidate Multiple Sites/Brands? – Whiteboard Friday

Posted by randfish

Making changes to your brand is a huge step, and while it’s sometimes the best path forward, it isn’t one to be taken lightly. In today’s Whiteboard Friday, Rand offers some guidance to marketers who are wondering whether a rebrand/redirect is right for them, and also those who are considering consolidating multiple sites under a single brand.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

To rebrand, or not to rebrand, that is the question

Howdy, Moz fans, and welcome to another edition of Whiteboard Friday. Today we’re going to chat a little bit about whether you should rebrand and consider redirecting your existing website or websites and whether you should potentially consolidate multiple websites and brands that you may be running.

So we’ve talked before about redirection moves best practices. We’ve also talked about the splitting of link equity and domain authority and those kinds of things. But one of the questions that people have is, “Gosh, you know I have a website today and given the moves that Google has been making, that the social media world has been making, that content marketing has been making, I’m wondering whether I should potentially rebrand my site.” Lots of people bought domains back in the day that were exact match domains or partial match domains or that they thought reflected a move of the web toward or away from less brand-centric stuff and toward more keyword matching, topic matching, intent matching kinds of things.

Maybe you’re reconsidering those moves and you want to know, “Hey, should I be thinking about making a change now?” That’s what I’m here to answer. So this question to rebrand or not to re, it is tough because you know that when you do that rebrand, you will almost certainly take a traffic hit, and SEO is one of the biggest places where people typically take that traffic hit.

Moz previously was at SEOmoz.org and moved to moz.com. We saw a dip in our traffic over about 3 to 4 months before it fully recovered, and I would say that dip was between 15% and 25% of our search traffic, depending on week to week. I’ll link to a list of metrics that I put on my personal blog, Moz.com/rand, so that you can check those out if you’d like to see them. But it was a short recovery time for us.

One of the questions that people always have is, “Well wait, did you lose rankings for SEO since SEO used to be in your domain name?” The answer is no. In fact, six months after the move, we were ranking higher for SEO related terms and phrases.

Scenario A: Rebranding or redirecting scifitoysandgames.com

So let’s imagine that today you are running SciFiToysAndGames.com, which is right on the borderline. In my opinion, that’s right on the borderline of barely tolerable. Like it could be brandable, but it’s not great. I don’t love the “sci-fi” in here, partially because of how the Syfy channel, the entity that broadcasts stuff on television has chosen to delineate their spelling, sci-fi can be misinterpreted as to how it’s spelled. I don’t love having to have “and” in a domain name. This is long. All sorts of stuff.

Let’s say you also own StarToys.com, but you haven’t used it. Previously StarToys.com has been redirecting to SciFiToysAndGames.com, and you’re thinking, “Well, man, is it the right time to make this move? Should I make this change now? Should I wait for the future?”

How memorable or amplifiable is your current brand?

Well, these are the questions that I would urge you to consider. How memorable and amplifiable is your current brand? That’s something that if you are recognizing like, “Hey I think our brand name, in fact, is holding us back in search results and social media amplification, press, in blog mentions, in journalist links and these kinds of things,” well, that’s something serious to think about. Word of mouth too.

Will you maintain your current brand name long term?

So if you know that sometime in the next two, three, four, or five years you do want to move to StarToys, I would actually strongly urge you to do that right now, because the longer you wait, the longer it will take to build up the signals around the new domain and the more pain you’ll potentially incur by having to keep branding this and working on this old brand name. So I would strongly urge you, if you know you’re going to make the move eventually, make it today. Take the pain now, rather than more pain later.

Can or have you tested brand preference with your target audience?

I would urge you to find two different groups, one who are loyal customers today, people who know SciFiToysAndGames.com and have used it, and two, people who are potential customers, but aren’t yet familiar with it.

You don’t need to do big sample-sizes. If you can get 5, 10, or 15 people either in a room or talk to them in person, you can try some web surveys, you can try using some social media ads like things on Facebook. I’ve seen some companies do some testing around this. Even buying potential PPC ads and seeing how click-through rates perform and sentiment and those kinds of things, that is a great way to help validate your ideas, especially if you’re forced to bring data to a table by executives or other stakeholders.

How much traffic would you need in one year to justify a URL move?

The last thing I think about is imagine, and I want you to either imagine or even model this out, mathematically model it out. If your traffic growth rate — so let’s say you’re growing at 10% year-over-year right now — if that improved 1%, 5%, or 10% annually with a new brand name, would you make the move? So knowing that you might take a short-term hit, but then that your growth rate would be incrementally higher in years to come, how big would that growth rate need to be?

I would say that, in general, if I were thinking about these two domains, granted this is a hard case because you don’t know exactly how much more brandable or word-of-mouth-able or amplifiable your new one might be compared to your existing one. Well, gosh, my general thing here is if you think that’s going to be a substantive percentage, say 5% plus, almost always it’s worth it, because compound growth rate over a number of years will mean that you’re winning big time. Remember that that growth rate is different that raw growth. If you can incrementally increase your growth rate, you get tremendously more traffic when you look back two, three, four, or five years later.

Where does your current and future URL live on the domain/brand name spectrum?

I also made this domain name, brand name spectrum, because I wanted to try and visualize crappiness of domain name, brand name to really good domain name, brand name. I wanted to give some examples and then extract out some elements so that maybe you can start to build on these things thematically as you’re considering your own domains.

So from awful, we go to tolerable, good, and great. So Science-Fi-Toys.net is obviously terrible. I’ve taken a contraction of the name and the actual one. It’s got a .net. It’s using hyphens. It’s infinitely unmemorable up to what I think is tolerable — SciFiToysAndGames.com. It’s long. There are some questions about how type-in-able it is, how easy it is to type in. SciFiToys.com, which that’s pretty good. SciFiToys, relatively short, concise. It still has the “sci-fi” in there, but it’s a .com. We’re getting better. All the way up to, I really love the name, StarToys. I think it’s very brandable, very memorable. It’s concise. It’s easy to remember and type in. It has positive associations probably with most science fiction toy buyers who are familiar with at least “Star Wars” or “Star Trek.” It’s cool. It has some astronomy connotations too. Just a lot of good stuff going on with that domain name.

Then, another one, Region-Data-API.com. That sucks. NeighborhoodInfo.com. Okay, at least I know what it is. Neighborhood is a really hard name to type because it is very hard for many people to spell and remember. It’s long. I don’t totally love it. I don’t love the “info” connotation, which is generic-y.

DistrictData.com has a nice, alliterative ring to it. But maybe we could do even better and actually there is a company, WalkScore.com, which I think is wonderfully brandable and memorable and really describes what it is without being too in your face about the generic brand of we have regional data about places.

What if you’re doing mobile apps? BestAndroidApps.com. You might say, “Why is that in awful?” The answer is two things. One, it’s the length of the domain name and then the fact that you’re actually using someone else’s trademark in your name, which can be really risky. Especially if you start blowing up, getting big, Google might go and say, “Oh, do you have Android in your domain name? We’ll take that please. Thank you very much.”

BestApps.io, in the tech world, it’s very popular to use domains like .io or .ly. Unfortunately, I think once you venture outside of the high tech world, it’s really tough to get people to remember that that is a domain name. If you put up a billboard that says “BestApps.com,” a majority of people will go, “Oh, that’s a website.” But if you use .io, .ly, or one of the new domain names, .ninja, a lot of people won’t even know to connect that up with, “Oh, they mean an Internet website that I can type into my browser or look for.”

So we have to remember that we sometimes live in a bubble. Outside of that bubble are a lot of people who, if it’s not .com, questionable as to whether they’re even going to know what it is. Remember outside of the U.S., country code domain names work equally well — .co.uk, .ca, .co.za, wherever you are.

InstallThis.com. Now we’re getting better. Memorable, clear. Then all the way up to, I really like the name AppCritic.com. I have positive associations with like, “Oh year, restaurant critics, food critics, and movie critics, and this is an app critic. Great, that’s very cool.”

What are the things that are in here? Well, stuff at this end of the spectrum tends to be generic, forgettable, hard to type in. It’s long, brand-infringing, danger, danger, and sketchy sounding. It’s hard to quantify what sketchy sounding is, but you know it when you see it. When you’re reviewing domain names, you’re looking for links, you’re looking at things in the SERPs, you’re like, “Hmm, I don’t know about this one.” Having that sixth sense is something that we all develop over time, so sketchy sounding not quite as scientific as I might want for a description, but powerful.

On this end of the spectrum though, domain names and brand names tend to be unique, memorable, short. They use .com. Unfortunately, still the gold standard. Easy to type in, pronounceable. That’s a powerful thing too, especially because of word of mouth. We suffered with that for a long time with SEOmoz because many people saw it and thought, “Oh, ShowMoz, COMoz, SeeMoz.” It sucked. Have positive associations, like StarToys or WalkScore or AppCritic. They have these positive, pre-built-in associations psychologically that suggest something brandable.

Scenario B: Consolidating two sites

Scenario B, and then we’ll get to the end, but scenario B is the question like, “Should I consolidate?” Let’s say I’m running both of these today. Or more realistic and many times I see people like this, you’re running AppCritic.com and StarToys.com, and you think, “Boy, these are pretty separate.” But then you keep finding overlap between them. Your content tends to overlap, the audience tends to overlap. I find this with many, many folks who run multiple domains.

How much audience and content overlap is there?

So we’ve got to consider a few things. First off, that audience and content overlap. If you’ve got StarToys and AppCritic and the overlap is very thin, just that little, tiny piece in the middle there. The content doesn’t overlap much, the audience doesn’t overlap much. It probably doesn’t make that much sense.

But what if you’re finding like, “Gosh, man, we’re writing more and more about apps and tech and mobile and web stuff on StarToys, and we’re writing more and more about other kinds of geeky, fun things on AppCritic. Slowly it feels like these audiences are merging.” Well, now you might want to consider that consolidation.

Is there potential for separate sales or exits?

Second point of consideration, the potential for separate exits or sales. So if you know that you’re going to sell AppCritic.com to someone in the future and you want to make sure that’s separate from StarToys, you should keep them separate. If you think to yourself, “Gosh, I’d never sell one without the other. They’re really part of the same company, brand, effort,” well, I’d really consider that consolidation.

Will you dilute marketing or branding efforts?

Last point of positive consideration is dilution of marketing and branding efforts. Remember that you’re going to be working on marketing. You’re going to be working on branding. You’re going to be working on growing traffic to these. When you split your efforts, unless you have two relatively large, separate teams, this is very, very hard to do at the same rate that it could be done if you combined those efforts. So another big point of consideration. That compound growth rate that we talked about, that’s another big consideration with this.

Is the topical focus out of context?

What I don’t recommend you consider and what has been unfortunately considered, by a lot of folks in the SEO-centric world in the past, is topical focus of the content. I actually am crossing this out. Not a big consideration. You might say to yourself, “But Rand, we talked about previously on Whiteboard Friday how I can have topical authority around toys and games that are related to science fiction stuff, and I can have topical authority related to mobile apps.”

My answer is if the content overlap is strong and the audience overlap is strong, you can do both on one domain. You can see many, many examples of this across the web, Moz being a great example where we talk about startups and technology and sometimes venture capital and team building and broad marketing and paid search marketing and organic search marketing and just a ton of topics, but all serving the same audience and content. Because that overlap is strong, we can be an authority in all of these realms. Same goes for any time you’re considering these things.

All right everyone, hope you’ve enjoyed this edition of Whiteboard Friday. I look forward to some great comments, and we’ll see you again next week. take care.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Moz’s 2014 Annual Report

Posted by SarahBird

Moz has a tradition of sharing its financials (check out 2012 and 2013 for funzies). It’s an important part of TAGFEE.

Why do we do it? Moz gets its strength from the community of marketers and entrepreneurs that support it. We celebrated 10 years of our community last October. In some ways, the purpose of this report is to give you an inside look into our company. It’s one of many lenses that tell the story of Moz.

Yep. I know. It’s April. I’m not proud. Better late than never, right?

I had a very long and extensive version of this post planned, something closer to last year’s extravaganza. I finally had to admit to myself that I was letting the perfect become the enemy of the good (or at least the done). There was no way I could capture an entire year’s worth of ups and downs—along with supporting data—in a single blog post.

Without further ado, here’s the meat-and-potatoes 2014 Year In Review (and here’s an infographic with more statistics for your viewing pleasure!):

Moz ended 2014 with $31.3 million in revenue. About $30 million was recurring revenue (mostly from subscriptions to Moz Pro and the API).

Here’s a breakdown of all our major revenue sources:

Compared to previous years, 2014 was a much slower growth year. We knew very early that it was going to be a tough year because we started Q1 with negative growth. We worked very hard and successfully shifted the momentum back to increasingly positive quarterly growth rates. I’m proud of what we’ve accomplished so far. We still have a long ways to go to meet our potential, but we’re on the path.

In subscription businesses, If you start the year with negative or even slow growth it is very hard to have meaningful annual growth. All things being equal, you’re better off having a bad quarter in Q4 than Q1. If you get a new customer in Q1, you usually earn revenue from that customer all year. If you get a new customer in Q4, it will barely make a dent in that year, although it should set you up nicely for the following year.

We exited 2014 on a good flight path, which bodes well for 2015. We slammed right into some nasty billing system challenges in Q1 2015, but still managed to grow revenue 6.5%. Mad props to the team for shifting momentum last year and for digging into the billing system challenges we’re experiencing now.

We were very successful in becoming more efficient and managing costs in 2014. Our Cost of Revenue (COR), the cost of producing what we sell, fell by 30% to $8.2 million. These savings drove our gross profit margin up from 63% in 2013 to 74%.

Our operating profit increased by 30%. Here’s a breakdown of our major expenses (both operating expenses and COR):

Total operating expenses (which don’t include COR) clocked in at about $29.9 million this year.

The efficiency gains positively impacted EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) by pushing it up 50% year over year. In 2013, EBITDA was -$4.5 million. We improved it to -$2.1 million in 2014. We’re a VC-backed startup, so this was a planned loss.

One of the most dramatic indicators of our improved efficiency in 2014 is the substantial decline in our consumption of cash.

In 2014, we spent $1.5 million in cash. This was a planned burn, and is actually very impressive for a startup. In fact, we are intentionally increasing our burn, so we don’t expect EBITDA and cash burn to look as good in 2015! Hopefully, though, you will see that revenue growth rate increase.

Let’s check in on some other Moz KPIs:

At the end of 2014, we reported a little over 27,000 Pro users. When billing system issues hit in Q1 2015, we discovered some weird under- and over-reporting, so the number of subscribers was adjusted down by about ~450 after we scrubbed a bunch of inactive accounts out of the database. We expect accounts to stabilize and be more reliable now that we’ve fixed those issues.

We launched Moz Local about a year ago. I’m amazed and thrilled that we were able to end the year managing 27,000 locations for a range of customers. We just recently took our baby steps into the UK, and we’ve got a bunch of great additional features planned. What an incredible launch year!

We published over 300 posts combined on the Moz Blog and YouMoz. Nearly 20,000 people left comments. Well done, team!

Our content and social efforts are paying off with a 26% year-over-year increase in organic search traffic.

We continue to see good growth across many of our off-site communities, too:

The team grew to 149 people last year. We’re at ~37% women, which is nowhere near where I want it to be. We have a long way to go before the team reflects the diversity of the communities around us.

Our paid, paid vacation perk is very popular with Mozzers, and why wouldn’t it be? Everyone gets $3,000/year to use toward their vacations. In 2014, we spent over $420,000 to help our Mozzers take a break and get connected with matters most.

PPV.png

Also, we’re hiring! You’ll have my undying gratitude if you send me your best software engineers. Help us, help you. 😉

Last, but certainly not least, Mozzers continue to be generous (the ‘G’ in TAGFEE) and donate to the charities of their choice. In 2014, Mozzers donated $48k, and Moz added another $72k to increase the impact of their gifts. Combining those two figures, we donated $120k to causes our team members are passionate about. That’s an average of $805 per employee!

Mozzers are optimists with initiative. I think that’s why they are so generous with their time and money to folks in need. They believe the world can be a better place if we act to change it.

That’s a wrap on 2014! A year with many ups and downs. Fortunately, Mozzers don’t quit when things get hard. They embrace TAGFEE and lean into the challenge.

Revenue is growing again. We’re still operating very efficiently, and TAGFEE is strong. We’re heads-down executing on some big projects that customers have been clamoring for. Thank you for sticking with us, and for inspiring us to make marketing better every day.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it