Why Effective, Modern SEO Requires Technical, Creative, and Strategic Thinking – Whiteboard Friday

Posted by randfish

There’s no doubt that quite a bit has changed about SEO, and that the field is far more integrated with other aspects of online marketing than it once was. In today’s Whiteboard Friday, Rand pushes back against the idea that effective modern SEO doesn’t require any technical expertise, outlining a fantastic list of technical elements that today’s SEOs need to know about in order to be truly effective.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

Video transcription

Howdy, Moz fans, and welcome to another edition of Whiteboard Friday. This week I’m going to do something unusual. I don’t usually point out these inconsistencies or sort of take issue with other folks’ content on the web, because I generally find that that’s not all that valuable and useful. But I’m going to make an exception here.

There is an article by Jayson DeMers, who I think might actually be here in Seattle — maybe he and I can hang out at some point — called “Why Modern SEO Requires Almost No Technical Expertise.” It was an article that got a shocking amount of traction and attention. On Facebook, it has thousands of shares. On LinkedIn, it did really well. On Twitter, it got a bunch of attention.

Some folks in the SEO world have already pointed out some issues around this. But because of the increasing popularity of this article, and because I think there’s, like, this hopefulness from worlds outside of kind of the hardcore SEO world that are looking to this piece and going, “Look, this is great. We don’t have to be technical. We don’t have to worry about technical things in order to do SEO.”

Look, I completely get the appeal of that. I did want to point out some of the reasons why this is not so accurate. At the same time, I don’t want to rain on Jayson, because I think that it’s very possible he’s writing an article for Entrepreneur, maybe he has sort of a commitment to them. Maybe he had no idea that this article was going to spark so much attention and investment. He does make some good points. I think it’s just really the title and then some of the messages inside there that I take strong issue with, and so I wanted to bring those up.

First off, some of the good points he did bring up.

One, he wisely says, “You don’t need to know how to code or to write and read algorithms in order to do SEO.” I totally agree with that. If today you’re looking at SEO and you’re thinking, “Well, am I going to get more into this subject? Am I going to try investing in SEO? But I don’t even know HTML and CSS yet.”

Those are good skills to have, and they will help you in SEO, but you don’t need them. Jayson’s totally right. You don’t have to have them, and you can learn and pick up some of these things, and do searches, watch some Whiteboard Fridays, check out some guides, and pick up a lot of that stuff later on as you need it in your career. SEO doesn’t have that hard requirement.

And secondly, he makes an intelligent point that we’ve made many times here at Moz, which is that, broadly speaking, a better user experience is well correlated with better rankings.

You make a great website that delivers great user experience, that provides the answers to searchers’ questions and gives them extraordinarily good content, way better than what’s out there already in the search results, generally speaking you’re going to see happy searchers, and that’s going to lead to higher rankings.

But not entirely. There are a lot of other elements that go in here. So I’ll bring up some frustrating points around the piece as well.

First off, there’s no acknowledgment — and I find this a little disturbing — that the ability to read and write code, or even HTML and CSS, which I think are the basic place to start, is helpful or can take your SEO efforts to the next level. I think both of those things are true.

So being able to look at a web page, view source on it, or pull up Firebug in Firefox or something and diagnose what’s going on and then go, “Oh, that’s why Google is not able to see this content. That’s why we’re not ranking for this keyword or term, or why even when I enter this exact sentence in quotes into Google, which is on our page, this is why it’s not bringing it up. It’s because it’s loading it after the page from a remote file that Google can’t access.” These are technical things, and being able to see how that code is built, how it’s structured, and what’s going on there, very, very helpful.

Some coding knowledge also can take your SEO efforts even further. I mean, so many times, SEOs are stymied by the conversations that we have with our programmers and our developers and the technical staff on our teams. When we can have those conversations intelligently, because at least we understand the principles of how an if-then statement works, or what software engineering best practices are being used, or they can upload something into a GitHub repository, and we can take a look at it there, that kind of stuff is really helpful.

Secondly, I don’t like that the article overly reduces all of this information that we have about what we’ve learned about Google. So he mentions two sources. One is things that Google tells us, and others are SEO experiments. I think both of those are true. Although I’d add that there’s sort of a sixth sense of knowledge that we gain over time from looking at many, many search results and kind of having this feel for why things rank, and what might be wrong with a site, and getting really good at that using tools and data as well. There are people who can look at Open Site Explorer and then go, “Aha, I bet this is going to happen.” They can look, and 90% of the time they’re right.

So he boils this down to, one, write quality content, and two, reduce your bounce rate. Neither of those things are wrong. You should write quality content, although I’d argue there are lots of other forms of quality content that aren’t necessarily written — video, images and graphics, podcasts, lots of other stuff.

And secondly, that just doing those two things is not always enough. So you can see, like many, many folks look and go, “I have quality content. It has a low bounce rate. How come I don’t rank better?” Well, your competitors, they’re also going to have quality content with a low bounce rate. That’s not a very high bar.

Also, frustratingly, this really gets in my craw. I don’t think “write quality content” means anything. You tell me. When you hear that, to me that is a totally non-actionable, non-useful phrase that’s a piece of advice that is so generic as to be discardable. So I really wish that there was more substance behind that.

The article also makes, in my opinion, the totally inaccurate claim that modern SEO really is reduced to “the happier your users are when they visit your site, the higher you’re going to rank.”

Wow. Okay. Again, I think broadly these things are correlated. User happiness and rank is broadly correlated, but it’s not a one to one. This is not like a, “Oh, well, that’s a 1.0 correlation.”

I would guess that the correlation is probably closer to like the page authority range. I bet it’s like 0.35 or something correlation. If you were to actually measure this broadly across the web and say like, “Hey, were you happier with result one, two, three, four, or five,” the ordering would not be perfect at all. It probably wouldn’t even be close.

There’s a ton of reasons why sometimes someone who ranks on Page 2 or Page 3 or doesn’t rank at all for a query is doing a better piece of content than the person who does rank well or ranks on Page 1, Position 1.

Then the article suggests five and sort of a half steps to successful modern SEO, which I think is a really incomplete list. So Jayson gives us;

  • Good on-site experience
  • Writing good content
  • Getting others to acknowledge you as an authority
  • Rising in social popularity
  • Earning local relevance
  • Dealing with modern CMS systems (which he notes most modern CMS systems are SEO-friendly)

The thing is there’s nothing actually wrong with any of these. They’re all, generally speaking, correct, either directly or indirectly related to SEO. The one about local relevance, I have some issue with, because he doesn’t note that there’s a separate algorithm for sort of how local SEO is done and how Google ranks local sites in maps and in their local search results. Also not noted is that rising in social popularity won’t necessarily directly help your SEO, although it can have indirect and positive benefits.

I feel like this list is super incomplete. Okay, I brainstormed just off the top of my head in the 10 minutes before we filmed this video a list. The list was so long that, as you can see, I filled up the whole whiteboard and then didn’t have any more room. I’m not going to bother to erase and go try and be absolutely complete.

But there’s a huge, huge number of things that are important, critically important for technical SEO. If you don’t know how to do these things, you are sunk in many cases. You can’t be an effective SEO analyst, or consultant, or in-house team member, because you simply can’t diagnose the potential problems, rectify those potential problems, identify strategies that your competitors are using, be able to diagnose a traffic gain or loss. You have to have these skills in order to do that.

I’ll run through these quickly, but really the idea is just that this list is so huge and so long that I think it’s very, very, very wrong to say technical SEO is behind us. I almost feel like the opposite is true.

We have to be able to understand things like;

  • Content rendering and indexability
  • Crawl structure, internal links, JavaScript, Ajax. If something’s post-loading after the page and Google’s not able to index it, or there are links that are accessible via JavaScript or Ajax, maybe Google can’t necessarily see those or isn’t crawling them as effectively, or is crawling them, but isn’t assigning them as much link weight as they might be assigning other stuff, and you’ve made it tough to link to them externally, and so they can’t crawl it.
  • Disabling crawling and/or indexing of thin or incomplete or non-search-targeted content. We have a bunch of search results pages. Should we use rel=prev/next? Should we robots.txt those out? Should we disallow from crawling with meta robots? Should we rel=canonical them to other pages? Should we exclude them via the protocols inside Google Webmaster Tools, which is now Google Search Console?
  • Managing redirects, domain migrations, content updates. A new piece of content comes out, replacing an old piece of content, what do we do with that old piece of content? What’s the best practice? It varies by different things. We have a whole Whiteboard Friday about the different things that you could do with that. What about a big redirect or a domain migration? You buy another company and you’re redirecting their site to your site. You have to understand things about subdomain structures versus subfolders, which, again, we’ve done another Whiteboard Friday about that.
  • Proper error codes, downtime procedures, and not found pages. If your 404 pages turn out to all be 200 pages, well, now you’ve made a big error there, and Google could be crawling tons of 404 pages that they think are real pages, because you’ve made it a status code 200, or you’ve used a 404 code when you should have used a 410, which is a permanently removed, to be able to get it completely out of the indexes, as opposed to having Google revisit it and keep it in the index.

Downtime procedures. So there’s specifically a… I can’t even remember. It’s a 5xx code that you can use. Maybe it was a 503 or something that you can use that’s like, “Revisit later. We’re having some downtime right now.” Google urges you to use that specific code rather than using a 404, which tells them, “This page is now an error.”

Disney had that problem a while ago, if you guys remember, where they 404ed all their pages during an hour of downtime, and then their homepage, when you searched for Disney World, was, like, “Not found.” Oh, jeez, Disney World, not so good.

  • International and multi-language targeting issues. I won’t go into that. But you have to know the protocols there. Duplicate content, syndication, scrapers. How do we handle all that? Somebody else wants to take our content, put it on their site, what should we do? Someone’s scraping our content. What can we do? We have duplicate content on our own site. What should we do?
  • Diagnosing traffic drops via analytics and metrics. Being able to look at a rankings report, being able to look at analytics connecting those up and trying to see: Why did we go up or down? Did we have less pages being indexed, more pages being indexed, more pages getting traffic less, more keywords less?
  • Understanding advanced search parameters. Today, just today, I was checking out the related parameter in Google, which is fascinating for most sites. Well, for Moz, weirdly, related:oursite.com shows nothing. But for virtually every other sit, well, most other sites on the web, it does show some really interesting data, and you can see how Google is connecting up, essentially, intentions and topics from different sites and pages, which can be fascinating, could expose opportunities for links, could expose understanding of how they view your site versus your competition or who they think your competition is.

Then there are tons of parameters, like in URL and in anchor, and da, da, da, da. In anchor doesn’t work anymore, never mind about that one.

I have to go faster, because we’re just going to run out of these. Like, come on. Interpreting and leveraging data in Google Search Console. If you don’t know how to use that, Google could be telling you, you have all sorts of errors, and you don’t know what they are.

  • Leveraging topic modeling and extraction. Using all these cool tools that are coming out for better keyword research and better on-page targeting. I talked about a couple of those at MozCon, like MonkeyLearn. There’s the new Moz Context API, which will be coming out soon, around that. There’s the Alchemy API, which a lot of folks really like and use.
  • Identifying and extracting opportunities based on site crawls. You run a Screaming Frog crawl on your site and you’re going, “Oh, here’s all these problems and issues.” If you don’t have these technical skills, you can’t diagnose that. You can’t figure out what’s wrong. You can’t figure out what needs fixing, what needs addressing.
  • Using rich snippet format to stand out in the SERPs. This is just getting a better click-through rate, which can seriously help your site and obviously your traffic.
  • Applying Google-supported protocols like rel=canonical, meta description, rel=prev/next, hreflang, robots.txt, meta robots, x robots, NOODP, XML sitemaps, rel=nofollow. The list goes on and on and on. If you’re not technical, you don’t know what those are, you think you just need to write good content and lower your bounce rate, it’s not going to work.
  • Using APIs from services like AdWords or MozScape, or hrefs from Majestic, or SEM refs from SearchScape or Alchemy API. Those APIs can have powerful things that they can do for your site. There are some powerful problems they could help you solve if you know how to use them. It’s actually not that hard to write something, even inside a Google Doc or Excel, to pull from an API and get some data in there. There’s a bunch of good tutorials out there. Richard Baxter has one, Annie Cushing has one, I think Distilled has some. So really cool stuff there.
  • Diagnosing page load speed issues, which goes right to what Jayson was talking about. You need that fast-loading page. Well, if you don’t have any technical skills, you can’t figure out why your page might not be loading quickly.
  • Diagnosing mobile friendliness issues
  • Advising app developers on the new protocols around App deep linking, so that you can get the content from your mobile apps into the web search results on mobile devices. Awesome. Super powerful. Potentially crazy powerful, as mobile search is becoming bigger than desktop.

Okay, I’m going to take a deep breath and relax. I don’t know Jayson’s intention, and in fact, if he were in this room, he’d be like, “No, I totally agree with all those things. I wrote the article in a rush. I had no idea it was going to be big. I was just trying to make the broader points around you don’t have to be a coder in order to do SEO.” That’s completely fine.

So I’m not going to try and rain criticism down on him. But I think if you’re reading that article, or you’re seeing it in your feed, or your clients are, or your boss is, or other folks are in your world, maybe you can point them to this Whiteboard Friday and let them know, no, that’s not quite right. There’s a ton of technical SEO that is required in 2015 and will be for years to come, I think, that SEOs have to have in order to be effective at their jobs.

All right, everyone. Look forward to some great comments, and we’ll see you again next time for another edition of Whiteboard Friday. Take care.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

​The 2015 Online Marketing Industry Survey

Posted by Dr-Pete

It’s been another wild year in search marketing. Mobilegeddon crushed our Twitter streams, but not our dreams, and Matt Cutts stepped out of the spotlight to make way for an uncertain Google future. Pandas and Penguins continue to torment us, but most days, like anyone else, we were just trying to get the job done and earn a living.

This year, over 3,600 brave souls, each one more intelligent and good-looking than the last, completed our survey. While the last survey was technically “2014”, we collected data for it in late 2013, so the 2015 survey reflects about 18 months of industry changes.

A few highlights

Let’s dig in. Almost half (49%) of our 2015 respondents involved in search marketing were in-house marketers. In-house teams still tend to be small – 71% of our in-house marketers reported only 1-3 people in their company being involved in search marketing at least quarter-time. These teams do have substantial influence, though, with 86% reporting that they were involved in purchasing decisions.

Agency search marketers reported larger teams and more diverse responsibilities. More than one-third (36%) of agency marketers in our survey reported working with more than 20 clients in the previous year. Agencies covered a wide range of services, with the top 5 being:

More than four-fifths (81%) of agency respondents reported providing both SEO and SEM services for clients. Please note that respondents could select more than one service/tool/etc., so the charts in this post will not add up to 100%.

The vast majority of respondents (85%) reported being directly involved with content marketing, which was on par with 2014. Nearly two-thirds (66%) of agency content marketers reported “Content for SEO purposes” as their top activity, although “Building Content Strategy” came in a solid second at 44% of respondents.

Top tools

Where do we get such wonderful toys? We marketers love our tools, so let’s take a look at the Top 10 tools across a range of categories. Please note that this survey was conducted here on Moz, and our audience certainly has a pro-Moz slant.

Up first, here are the Top 10 SEO tools in our survey:

Just like last time, Google Webmaster Tools (now “Search Console”) leads the way. Moz Pro and Majestic slipped a little bit, and Firebug fell out of the Top 10. The core players remained fairly stable.

Here are the Top 10 Content tools in our survey:

Even with its uncertain future, Google Alerts continues to be widely used. There are a lot of newcomers to the content tools world, so year-over-year comparisons are tricky. Expect even more players in this market in the coming year.

Following are our respondents’ Top 10 analytics tools:

For an industry that complains about Google so much, we sure do seem to love their stuff. Google Analytics dominates, crushing the enterprise players, at least in the mid-market. KISSmetrics gained solid ground (from the #10 spot last time), while home-brewed tools slipped a bit. CrazyEgg and WordPress Stats remain very popular since our last survey.

Finally, here are the Top 10 social tools used by our respondents:

Facebook Insights and Hootsuite retained the top spots from last year, but newcomer Twitter Analytics rocketed into the #3 position. LinkedIn Insights emerged as a strong contender, too. Overall usage of all social tools increased. Tweetdeck held the #6 spot in 2014, with 19% usage, but dropped to #10 this year, even bumping up slightly to 20%.

Of course, digging into social tools naturally begs the question of which social networks are at the top of our lists.

The Top 6 are unchanged since our last survey, and it’s clear that the barriers to entry to compete with the big social networks are only getting higher. Instagram doubled its usage (from 11% of respondents last time), but this still wasn’t enough to overtake Pinterest. Reddit and Quora saw steady growth, and StumbleUpon slipped out of the Top 10.

Top activities

So, what exactly do we do with these tools and all of our time? Across all online marketers in our survey, the Top 5 activities were:

For in-house marketers, “Site Audits” dropped to the #6 position and “Brand Strategy” jumped up to the #3 spot. Naturally, in-house marketers have more resources to focus on strategy.

For agencies and consultants, “Site Audits” bumped up to #2, and “Managing People” pushed down social media to take the #5 position. Larger agency teams require more traditional people wrangling.

Here’s a much more detailed breakdown of how we spend our time in 2015:

In terms of overall demand for services, the Top 5 winners (calculated by % reporting increase – % reporting decrease were):

Demand for CRO is growing at a steady clip, but analytics still leads the way. Both “Content Creation” (#2) and “Content Curation” (#6) showed solid demand increases.

Some categories reported both gains and losses – 30% of respondents reported increased demand for “Link Building”, while 20% reported decreased demand. Similarly, 20% reported increased demand for “Link Removal”, while almost as many (17%) reported decreased demand. This may be a result of overall demand shifts, or it may represent more specialization by agencies and consultants.

What’s in store for 2016?

It’s clear that our job as online marketers is becoming more diverse, more challenging, and more strategic. We have to have a command of a wide array of tools and tactics, and that’s not going to slow down any time soon. On the bright side, companies are more aware of what we do, and they’re more willing to spend the money to have it done. Our evolution has barely begun as an industry, and you can expect more changes and growth in the coming year.

Raw data download

If you’d like to take a look through the raw results from this year’s survey (we’ve removed identifying information like email addresses from all responses), we’ve got that for you here:

Download the raw results

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Big Data, Big Problems: 4 Major Link Indexes Compared

Posted by russangular

Given this blog’s readership, chances are good you will spend some time this week looking at backlinks in one of the growing number of link data tools. We know backlinks continue to be one of, if not the most important
parts of Google’s ranking algorithm. We tend to take these link data sets at face value, though, in part because they are all we have. But when your rankings are on the line, is there a better way to get at which data set is the best? How should we go
about assessing these different link indexes like
Moz,
Majestic, Ahrefs and SEMrush for quality? Historically, there have been 4 common approaches to this question of index quality…

  • Breadth: We might choose to look at the number of linking root domains any given service reports. We know
    that referring domains correlates strongly with search rankings, so it makes sense to judge a link index by how many unique domains it has
    discovered and indexed.
  • Depth: We also might choose to look at how deep the web has been crawled, looking more at the total number of URLs
    in the index, rather than the diversity of referring domains.
  • Link Overlap: A more sophisticated approach might count the number of links an index has in common with Google Webmaster
    Tools.
  • Freshness: Finally, we might choose to look at the freshness of the index. What percentage of links in the index are
    still live?

There are a number of really good studies (some newer than others) using these techniques that are worth checking out when you get a chance:

  • BuiltVisible analysis of Moz, Majestic, GWT, Ahrefs and Search Metrics
  • SEOBook comparison of Moz, Majestic, Ahrefs, and Ayima
  • MatthewWoodward
    study of Ahrefs, Majestic, Moz, Raven and SEO Spyglass
  • Marketing Signals analysis of Moz, Majestic, Ahrefs, and GWT
  • RankAbove comparison of Moz, Majestic, Ahrefs and Link Research Tools
  • StoneTemple study of Moz and Majestic

While these are all excellent at addressing the methodologies above, there is a particular limitation with all of them. They miss one of the
most important metrics we need to determine the value of a link index: proportional representation to Google’s link graph
. So here at Angular Marketing, we decided to take a closer look.

Proportional representation to Google Search Console data

So, why is it important to determine proportional representation? Many of the most important and valued metrics we use are built on proportional
models. PageRank, MozRank, CitationFlow and Ahrefs Rank are proportional in nature. The score of any one URL in the data set is relative to the
other URLs in the data set. If the data set is biased, the results are biased.

A Visualization

Link graphs are biased by their crawl prioritization. Because there is no full representation of the Internet, every link graph, even Google’s,
is a biased sample of the web. Imagine for a second that the picture below is of the web. Each dot represents a page on the Internet,
and the dots surrounded by green represent a fictitious index by Google of certain sections of the web.

Of course, Google isn’t the only organization that crawls the web. Other organizations like Moz,
Majestic, Ahrefs, and SEMrush
have their own crawl prioritizations which result in different link indexes.

In the example above, you can see different link providers trying to index the web like Google. Link data provider 1 (purple) does a good job
of building a model that is similar to Google. It isn’t very big, but it is proportional. Link data provider 2 (blue) has a much larger index,
and likely has more links in common with Google that link data provider 1, but it is highly disproportional. So, how would we go about measuring
this proportionality? And which data set is the most proportional to Google?

Methodology

The first step is to determine a measurement of relativity for analysis. Google doesn’t give us very much information about their link graph.
All we have is what is in Google Search Console. The best source we can use is referring domain counts. In particular, we want to look at
what we call
referring domain link pairs. A referring domain link pair would be something like ask.com->mlb.com: 9,444 which means
that ask.com links to mlb.com 9,444 times.

Steps

  1. Determine the root linking domain pairs and values to 100+ sites in Google Search Console
  2. Determine the same for Ahrefs, Moz, Majestic Fresh, Majestic Historic, SEMrush
  3. Compare the referring domain link pairs of each data set to Google, assuming a
    Poisson Distribution
  4. Run simulations of each data set’s performance against each other (ie: Moz vs Maj, Ahrefs vs SEMrush, Moz vs SEMrush, et al.)
  5. Analyze the results

Results

When placed head-to-head, there seem to be some clear winners at first glance. In head-to-head, Moz edges out Ahrefs, but across the board, Moz and Ahrefs fare quite evenly. Moz, Ahrefs and SEMrush seem to be far better than Majestic Fresh and Majestic Historic. Is that really the case? And why?

It turns out there is an inversely proportional relationship between index size and proportional relevancy. This might seem counterintuitive,
shouldn’t the bigger indexes be closer to Google? Not Exactly.

What does this mean?

Each organization has to create a crawl prioritization strategy. When you discover millions of links, you have to prioritize which ones you
might crawl next. Google has a crawl prioritization, so does Moz, Majestic, Ahrefs and SEMrush. There are lots of different things you might
choose to prioritize…

  • You might prioritize link discovery. If you want to build a very large index, you could prioritize crawling pages on sites that
    have historically provided new links.
  • You might prioritize content uniqueness. If you want to build a search engine, you might prioritize finding pages that are unlike
    any you have seen before. You could choose to crawl domains that historically provide unique data and little duplicate content.
  • You might prioritize content freshness. If you want to keep your search engine recent, you might prioritize crawling pages that
    change frequently.
  • You might prioritize content value, crawling the most important URLs first based on the number of inbound links to that page.

Chances are, an organization’s crawl priority will blend some of these features, but it’s difficult to design one exactly like Google. Imagine
for a moment that instead of crawling the web, you want to climb a tree. You have to come up with a tree climbing strategy.

  • You decide to climb the longest branch you see at each intersection.
  • One friend of yours decides to climb the first new branch he reaches, regardless of how long it is.
  • Your other friend decides to climb the first new branch she reaches only if she sees another branch coming off of it.

Despite having different climb strategies, everyone chooses the same first branch, and everyone chooses the same second branch. There are only
so many different options early on.

But as the climbers go further and further along, their choices eventually produce differing results. This is exactly the same for web crawlers
like Google, Moz, Majestic, Ahrefs and SEMrush. The bigger the crawl, the more the crawl prioritization will cause disparities. This is not a
deficiency; this is just the nature of the beast. However, we aren’t completely lost. Once we know how index size is related to disparity, we
can make some inferences about how similar a crawl priority may be to Google.

Unfortunately, we have to be careful in our conclusions. We only have a few data points with which to work, so it is very difficult to be
certain regarding this part of the analysis. In particular, it seems strange that Majestic would get better relative to its index size as it grows,
unless Google holds on to old data (which might be an important discovery in and of itself). It is most likely that at this point we can’t make
this level of conclusion.

So what do we do?

Let’s say you have a list of domains or URLs for which you would like to know their relative values. Your process might look something like
this…

  • Check Open Site Explorer to see if all URLs are in their index. If so, you are looking metrics most likely to be proportional to Google’s link graph.
  • If any of the links do not occur in the index, move to Ahrefs and use their Ahrefs ranking if all you need is a single PageRank-like metric.
  • If any of the links are missing from Ahrefs’s index, or you need something related to trust, move on to Majestic Fresh.
  • Finally, use Majestic Historic for (by leaps and bounds) the largest coverage available.

It is important to point out that the likelihood that all the URLs you want to check are in a single index increases as the accuracy of the metric
decreases. Considering the size of Majestic’s data, you can’t ignore them because you are less likely to get null value answers from their data than
the others. If anything rings true, it is that once again it makes sense to get data
from as many sources as possible. You won’t
get the most proportional data without Moz, the broadest data without Majestic, or everything in-between without Ahrefs.

What about SEMrush? They are making progress, but they don’t publish any relative statistics that would be useful in this particular
case. Maybe we can hope to see more from them soon given their already promising index!

Recommendations for the link graphing industry

All we hear about these days is big data; we almost never hear about good data. I know that the teams at Moz,
Majestic, Ahrefs, SEMrush and others are interested in mimicking Google, but I would love to see some organization stand up against the
allure of
more data in favor of better data—data more like Google’s. It could begin with testing various crawl strategies to see if they produce
a result more similar to that of data shared in Google Search Console. Having the most Google-like data is certainly a crown worth winning.

Credits

Thanks to Diana Carter at Angular for assistance with data acquisition and Andrew Cron with statistical analysis. Thanks also to the representatives from Moz, Majestic, Ahrefs, and SEMrush for answering questions about their indices.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

[Tutorial] Google Analytics – SEO Reports

How to enable and use the Search Engine Optimization (SEO) reports in Google Analytics, and how they tie into Google Webmaster Tools. Endress|Analytics LLC…

Reblogged 3 years ago from www.youtube.com

How to Setup Google Webmaster Tools for SEO

Learn how to setup Google webmaster tools. This step-by-step guide will show you how to verify your website, how to create a robots.txt file and how to produce an XML sitemap. We also show…

Reblogged 3 years ago from www.youtube.com

Spam Score: Moz’s New Metric to Measure Penalization Risk

Posted by randfish

Today, I’m very excited to announce that Moz’s Spam Score, an R&D project we’ve worked on for nearly a year, is finally going live. In this post, you can learn more about how we’re calculating spam score, what it means, and how you can potentially use it in your SEO work.

How does Spam Score work?

Over the last year, our data science team, led by 
Dr. Matt Peters, examined a great number of potential factors that predicted that a site might be penalized or banned by Google. We found strong correlations with 17 unique factors we call “spam flags,” and turned them into a score.

Almost every subdomain in 
Mozscape (our web index) now has a Spam Score attached to it, and this score is viewable inside Open Site Explorer (and soon, the MozBar and other tools). The score is simple; it just records the quantity of spam flags the subdomain triggers. Our correlations showed that no particular flag was more likely than others to mean a domain was penalized/banned in Google, but firing many flags had a very strong correlation (you can see the math below).

Spam Score currently operates only on the subdomain level—we don’t have it for pages or root domains. It’s been my experience and the experience of many other SEOs in the field that a great deal of link spam is tied to the subdomain-level. There are plenty of exceptions—manipulative links can and do live on plenty of high-quality sites—but as we’ve tested, we found that subdomain-level Spam Score was the best solution we could create at web scale. It does a solid job with the most obvious, nastiest spam, and a decent job highlighting risk in other areas, too.

How to access Spam Score

Right now, you can find Spam Score inside 
Open Site Explorer, both in the top metrics (just below domain/page authority) and in its own tab labeled “Spam Analysis.” Spam Score is only available for Pro subscribers right now, though in the future, we may make the score in the metrics section available to everyone (if you’re not a subscriber, you can check it out with a free trial). 

The current Spam Analysis page includes a list of subdomains or pages linking to your site. You can toggle the target to look at all links to a given subdomain on your site, given pages, or the entire root domain. You can further toggle source tier to look at the Spam Score for incoming linking pages or subdomains (but in the case of pages, we’re still showing the Spam Score for the subdomain on which that page is hosted).

You can click on any Spam Score row and see the details about which flags were triggered. We’ll bring you to a page like this:

Back on the original Spam Analysis page, at the very bottom of the rows, you’ll find an option to export a disavow file, which is compatible with Google Webmaster Tools. You can choose to filter the file to contain only those sites with a given spam flag count or higher:

Disavow exports usually take less than 3 hours to finish. We can send you an email when it’s ready, too.

WARNING: Please do not export this file and simply upload it to Google! You can really, really hurt your site’s ranking and there may be no way to recover. Instead, carefully sort through the links therein and make sure you really do want to disavow what’s in there. You can easily remove/edit the file to take out links you feel are not spam. When Moz’s Cyrus Shepard disavowed every link to his own site, it took more than a year for his rankings to return!

We’ve actually made the file not-wholly-ready for upload to Google in order to be sure folks aren’t too cavalier with this particular step. You’ll need to open it up and make some edits (specifically to lines at the top of the file) in order to ready it for Webmaster Tools

In the near future, we hope to have Spam Score in the Mozbar as well, which might look like this: 

Sweet, right? 🙂

Potential use cases for Spam Analysis

This list probably isn’t exhaustive, but these are a few of the ways we’ve been playing around with the data:

  1. Checking for spammy links to your own site: Almost every site has at least a few bad links pointing to it, but it’s been hard to know how much or how many potentially harmful links you might have until now. Run a quick spam analysis and see if there’s enough there to cause concern.
  2. Evaluating potential links: This is a big one where we think Spam Score can be helpful. It’s not going to catch every potentially bad link, and you should certainly still use your brain for evaluation too, but as you’re scanning a list of link opportunities or surfing to various sites, having the ability to see if they fire a lot of flags is a great warning sign.
  3. Link cleanup: Link cleanup projects can be messy, involved, precarious, and massively tedious. Spam Score might not catch everything, but sorting links by it can be hugely helpful in identifying potentially nasty stuff, and filtering out the more probably clean links.
  4. Disavow Files: Again, because Spam Score won’t perfectly catch everything, you will likely need to do some additional work here (especially if the site you’re working on has done some link buying on more generally trustworthy domains), but it can save you a heap of time evaluating and listing the worst and most obvious junk.

Over time, we’re also excited about using Spam Score to help improve the PA and DA calculations (it’s not currently in there), as well as adding it to other tools and data sources. We’d love your feedback and insight about where you’d most want to see Spam Score get involved.

Details about Spam Score’s calculation

This section comes courtesy of Moz’s head of data science, Dr. Matt Peters, who created the metric and deserves (at least in my humble opinion) a big round of applause. – Rand

Definition of “spam”

Before diving into the details of the individual spam flags and their calculation, it’s important to first describe our data gathering process and “spam” definition.

For our purposes, we followed Google’s definition of spam and gathered labels for a large number of sites as follows.

  • First, we randomly selected a large number of subdomains from the Mozscape index stratified by mozRank.
  • Then we crawled the subdomains and threw out any that didn’t return a “200 OK” (redirects, errors, etc).
  • Finally, we collected the top 10 de-personalized, geo-agnostic Google-US search results using the full subdomain name as the keyword and checked whether any of those results matched the original keyword. If they did not, we called the subdomain “spam,” otherwise we called it “ham.”

We performed the most recent data collection in November 2014 (after the Penguin 3.0 update) for about 500,000 subdomains.

Relationship between number of flags and spam

The overall Spam Score is currently an aggregate of 17 different “flags.” You can think of each flag a potential “warning sign” that signals that a site may be spammy. The overall likelihood of spam increases as a site accumulates more and more flags, so that the total number of flags is a strong predictor of spam. Accordingly, the flags are designed to be used together—no single flag, or even a few flags, is cause for concern (and indeed most sites will trigger at least a few flags).

The following table shows the relationship between the number of flags and percent of sites with those flags that we found Google had penalized or banned:

ABOVE: The overall probability of spam vs. the number of spam flags. Data collected in Nov. 2014 for approximately 500K subdomains. The table also highlights the three overall danger levels: low/green (< 10%) moderate/yellow (10-50%) and high/red (>50%)

The overall spam percent averaged across a large number of sites increases in lock step with the number of flags; however there are outliers in every category. For example, there are a small number of sites with very few flags that are tagged as spam by Google and conversely a small number of sites with many flags that are not spam.

Spam flag details

The individual spam flags capture a wide range of spam signals link profiles, anchor text, on page signals and properties of the domain name. At a high level the process to determine the spam flags for each subdomain is:

  • Collect link metrics from Mozscape (mozRank, mozTrust, number of linking domains, etc).
  • Collect anchor text metrics from Mozscape (top anchor text phrases sorted by number of links)
  • Collect the top five pages by Page Authority on the subdomain from Mozscape
  • Crawl the top five pages plus the home page and process to extract on page signals
  • Provide the output for Mozscape to include in the next index release cycle

Since the spam flags are incorporated into in the Mozscape index, fresh data is released with each new index. Right now, we crawl and process the spam flags for each subdomains every two – three months although this may change in the future.

Link flags

The following table lists the link and anchor text related flags with the the odds ratio for each flag. For each flag, we can compute two percents: the percent of sites with that flag that are penalized by Google and the percent of sites with that flag that were not penalized. The odds ratio is the ratio of these percents and gives the increase in likelihood that a site is spam if it has the flag. For example, the first row says that a site with this flag is 12.4 times more likely to be spam than one without the flag.

ABOVE: Description and odds ratio of link and anchor text related spam flags. In addition to a description, it lists the odds ratio for each flag which gives the overall increase in spam likelihood if the flag is present).

Working down the table, the flags are:

  • Low mozTrust to mozRank ratio: Sites with low mozTrust compared to mozRank are likely to be spam.
  • Large site with few links: Large sites with many pages tend to also have many links and large sites without a corresponding large number of links are likely to be spam.
  • Site link diversity is low: If a large percentage of links to a site are from a few domains it is likely to be spam.
  • Ratio of followed to nofollowed subdomains/domains (two separate flags): Sites with a large number of followed links relative to nofollowed are likely to be spam.
  • Small proportion of branded links (anchor text): Organically occurring links tend to contain a disproportionate amount of banded keywords. If a site does not have a lot of branded anchor text, it’s a signal the links are not organic.

On-page flags

Similar to the link flags, the following table lists the on page and domain name related flags:

ABOVE: Description and odds ratio of on page and domain name related spam flags. In addition to a description, it lists the odds ratio for each flag which gives the overall increase in spam likelihood if the flag is present).

  • Thin content: If a site has a relatively small ratio of content to navigation chrome it’s likely to be spam.
  • Site mark-up is abnormally small: Non-spam sites tend to invest in rich user experiences with CSS, Javascript and extensive mark-up. Accordingly, a large ratio of text to mark-up is a spam signal.
  • Large number of external links: A site with a large number of external links may look spammy.
  • Low number of internal links: Real sites tend to link heavily to themselves via internal navigation and a relative lack of internal links is a spam signal.
  • Anchor text-heavy page: Sites with a lot of anchor text are more likely to be spam then those with more content and less links.
  • External links in navigation: Spam sites may hide external links in the sidebar or footer.
  • No contact info: Real sites prominently display their social and other contact information.
  • Low number of pages found: A site with only one or a few pages is more likely to be spam than one with many pages.
  • TLD correlated with spam domains: Certain TLDs are more spammy than others (e.g. pw).
  • Domain name length: A long subdomain name like “bycheapviagra.freeshipping.onlinepharmacy.com” may indicate keyword stuffing.
  • Domain name contains numerals: domain names with numerals may be automatically generated and therefore spam.

If you’d like some more details on the technical aspects of the spam score, check out the 
video of Matt’s 2012 MozCon talk about Algorithmic Spam Detection or the slides (many of the details have evolved, but the overall ideas are the same):

We’d love your feedback

As with all metrics, Spam Score won’t be perfect. We’d love to hear your feedback and ideas for improving the score as well as what you’d like to see from it’s in-product application in the future. Feel free to leave comments on this post, or to email Matt (matt at moz dot com) and me (rand at moz dot com) privately with any suggestions.

Good luck cleaning up and preventing link spam!



Not a Pro Subscriber? No problem!



Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it