Why Effective, Modern SEO Requires Technical, Creative, and Strategic Thinking – Whiteboard Friday

Posted by randfish

There’s no doubt that quite a bit has changed about SEO, and that the field is far more integrated with other aspects of online marketing than it once was. In today’s Whiteboard Friday, Rand pushes back against the idea that effective modern SEO doesn’t require any technical expertise, outlining a fantastic list of technical elements that today’s SEOs need to know about in order to be truly effective.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

Video transcription

Howdy, Moz fans, and welcome to another edition of Whiteboard Friday. This week I’m going to do something unusual. I don’t usually point out these inconsistencies or sort of take issue with other folks’ content on the web, because I generally find that that’s not all that valuable and useful. But I’m going to make an exception here.

There is an article by Jayson DeMers, who I think might actually be here in Seattle — maybe he and I can hang out at some point — called “Why Modern SEO Requires Almost No Technical Expertise.” It was an article that got a shocking amount of traction and attention. On Facebook, it has thousands of shares. On LinkedIn, it did really well. On Twitter, it got a bunch of attention.

Some folks in the SEO world have already pointed out some issues around this. But because of the increasing popularity of this article, and because I think there’s, like, this hopefulness from worlds outside of kind of the hardcore SEO world that are looking to this piece and going, “Look, this is great. We don’t have to be technical. We don’t have to worry about technical things in order to do SEO.”

Look, I completely get the appeal of that. I did want to point out some of the reasons why this is not so accurate. At the same time, I don’t want to rain on Jayson, because I think that it’s very possible he’s writing an article for Entrepreneur, maybe he has sort of a commitment to them. Maybe he had no idea that this article was going to spark so much attention and investment. He does make some good points. I think it’s just really the title and then some of the messages inside there that I take strong issue with, and so I wanted to bring those up.

First off, some of the good points he did bring up.

One, he wisely says, “You don’t need to know how to code or to write and read algorithms in order to do SEO.” I totally agree with that. If today you’re looking at SEO and you’re thinking, “Well, am I going to get more into this subject? Am I going to try investing in SEO? But I don’t even know HTML and CSS yet.”

Those are good skills to have, and they will help you in SEO, but you don’t need them. Jayson’s totally right. You don’t have to have them, and you can learn and pick up some of these things, and do searches, watch some Whiteboard Fridays, check out some guides, and pick up a lot of that stuff later on as you need it in your career. SEO doesn’t have that hard requirement.

And secondly, he makes an intelligent point that we’ve made many times here at Moz, which is that, broadly speaking, a better user experience is well correlated with better rankings.

You make a great website that delivers great user experience, that provides the answers to searchers’ questions and gives them extraordinarily good content, way better than what’s out there already in the search results, generally speaking you’re going to see happy searchers, and that’s going to lead to higher rankings.

But not entirely. There are a lot of other elements that go in here. So I’ll bring up some frustrating points around the piece as well.

First off, there’s no acknowledgment — and I find this a little disturbing — that the ability to read and write code, or even HTML and CSS, which I think are the basic place to start, is helpful or can take your SEO efforts to the next level. I think both of those things are true.

So being able to look at a web page, view source on it, or pull up Firebug in Firefox or something and diagnose what’s going on and then go, “Oh, that’s why Google is not able to see this content. That’s why we’re not ranking for this keyword or term, or why even when I enter this exact sentence in quotes into Google, which is on our page, this is why it’s not bringing it up. It’s because it’s loading it after the page from a remote file that Google can’t access.” These are technical things, and being able to see how that code is built, how it’s structured, and what’s going on there, very, very helpful.

Some coding knowledge also can take your SEO efforts even further. I mean, so many times, SEOs are stymied by the conversations that we have with our programmers and our developers and the technical staff on our teams. When we can have those conversations intelligently, because at least we understand the principles of how an if-then statement works, or what software engineering best practices are being used, or they can upload something into a GitHub repository, and we can take a look at it there, that kind of stuff is really helpful.

Secondly, I don’t like that the article overly reduces all of this information that we have about what we’ve learned about Google. So he mentions two sources. One is things that Google tells us, and others are SEO experiments. I think both of those are true. Although I’d add that there’s sort of a sixth sense of knowledge that we gain over time from looking at many, many search results and kind of having this feel for why things rank, and what might be wrong with a site, and getting really good at that using tools and data as well. There are people who can look at Open Site Explorer and then go, “Aha, I bet this is going to happen.” They can look, and 90% of the time they’re right.

So he boils this down to, one, write quality content, and two, reduce your bounce rate. Neither of those things are wrong. You should write quality content, although I’d argue there are lots of other forms of quality content that aren’t necessarily written — video, images and graphics, podcasts, lots of other stuff.

And secondly, that just doing those two things is not always enough. So you can see, like many, many folks look and go, “I have quality content. It has a low bounce rate. How come I don’t rank better?” Well, your competitors, they’re also going to have quality content with a low bounce rate. That’s not a very high bar.

Also, frustratingly, this really gets in my craw. I don’t think “write quality content” means anything. You tell me. When you hear that, to me that is a totally non-actionable, non-useful phrase that’s a piece of advice that is so generic as to be discardable. So I really wish that there was more substance behind that.

The article also makes, in my opinion, the totally inaccurate claim that modern SEO really is reduced to “the happier your users are when they visit your site, the higher you’re going to rank.”

Wow. Okay. Again, I think broadly these things are correlated. User happiness and rank is broadly correlated, but it’s not a one to one. This is not like a, “Oh, well, that’s a 1.0 correlation.”

I would guess that the correlation is probably closer to like the page authority range. I bet it’s like 0.35 or something correlation. If you were to actually measure this broadly across the web and say like, “Hey, were you happier with result one, two, three, four, or five,” the ordering would not be perfect at all. It probably wouldn’t even be close.

There’s a ton of reasons why sometimes someone who ranks on Page 2 or Page 3 or doesn’t rank at all for a query is doing a better piece of content than the person who does rank well or ranks on Page 1, Position 1.

Then the article suggests five and sort of a half steps to successful modern SEO, which I think is a really incomplete list. So Jayson gives us;

  • Good on-site experience
  • Writing good content
  • Getting others to acknowledge you as an authority
  • Rising in social popularity
  • Earning local relevance
  • Dealing with modern CMS systems (which he notes most modern CMS systems are SEO-friendly)

The thing is there’s nothing actually wrong with any of these. They’re all, generally speaking, correct, either directly or indirectly related to SEO. The one about local relevance, I have some issue with, because he doesn’t note that there’s a separate algorithm for sort of how local SEO is done and how Google ranks local sites in maps and in their local search results. Also not noted is that rising in social popularity won’t necessarily directly help your SEO, although it can have indirect and positive benefits.

I feel like this list is super incomplete. Okay, I brainstormed just off the top of my head in the 10 minutes before we filmed this video a list. The list was so long that, as you can see, I filled up the whole whiteboard and then didn’t have any more room. I’m not going to bother to erase and go try and be absolutely complete.

But there’s a huge, huge number of things that are important, critically important for technical SEO. If you don’t know how to do these things, you are sunk in many cases. You can’t be an effective SEO analyst, or consultant, or in-house team member, because you simply can’t diagnose the potential problems, rectify those potential problems, identify strategies that your competitors are using, be able to diagnose a traffic gain or loss. You have to have these skills in order to do that.

I’ll run through these quickly, but really the idea is just that this list is so huge and so long that I think it’s very, very, very wrong to say technical SEO is behind us. I almost feel like the opposite is true.

We have to be able to understand things like;

  • Content rendering and indexability
  • Crawl structure, internal links, JavaScript, Ajax. If something’s post-loading after the page and Google’s not able to index it, or there are links that are accessible via JavaScript or Ajax, maybe Google can’t necessarily see those or isn’t crawling them as effectively, or is crawling them, but isn’t assigning them as much link weight as they might be assigning other stuff, and you’ve made it tough to link to them externally, and so they can’t crawl it.
  • Disabling crawling and/or indexing of thin or incomplete or non-search-targeted content. We have a bunch of search results pages. Should we use rel=prev/next? Should we robots.txt those out? Should we disallow from crawling with meta robots? Should we rel=canonical them to other pages? Should we exclude them via the protocols inside Google Webmaster Tools, which is now Google Search Console?
  • Managing redirects, domain migrations, content updates. A new piece of content comes out, replacing an old piece of content, what do we do with that old piece of content? What’s the best practice? It varies by different things. We have a whole Whiteboard Friday about the different things that you could do with that. What about a big redirect or a domain migration? You buy another company and you’re redirecting their site to your site. You have to understand things about subdomain structures versus subfolders, which, again, we’ve done another Whiteboard Friday about that.
  • Proper error codes, downtime procedures, and not found pages. If your 404 pages turn out to all be 200 pages, well, now you’ve made a big error there, and Google could be crawling tons of 404 pages that they think are real pages, because you’ve made it a status code 200, or you’ve used a 404 code when you should have used a 410, which is a permanently removed, to be able to get it completely out of the indexes, as opposed to having Google revisit it and keep it in the index.

Downtime procedures. So there’s specifically a… I can’t even remember. It’s a 5xx code that you can use. Maybe it was a 503 or something that you can use that’s like, “Revisit later. We’re having some downtime right now.” Google urges you to use that specific code rather than using a 404, which tells them, “This page is now an error.”

Disney had that problem a while ago, if you guys remember, where they 404ed all their pages during an hour of downtime, and then their homepage, when you searched for Disney World, was, like, “Not found.” Oh, jeez, Disney World, not so good.

  • International and multi-language targeting issues. I won’t go into that. But you have to know the protocols there. Duplicate content, syndication, scrapers. How do we handle all that? Somebody else wants to take our content, put it on their site, what should we do? Someone’s scraping our content. What can we do? We have duplicate content on our own site. What should we do?
  • Diagnosing traffic drops via analytics and metrics. Being able to look at a rankings report, being able to look at analytics connecting those up and trying to see: Why did we go up or down? Did we have less pages being indexed, more pages being indexed, more pages getting traffic less, more keywords less?
  • Understanding advanced search parameters. Today, just today, I was checking out the related parameter in Google, which is fascinating for most sites. Well, for Moz, weirdly, related:oursite.com shows nothing. But for virtually every other sit, well, most other sites on the web, it does show some really interesting data, and you can see how Google is connecting up, essentially, intentions and topics from different sites and pages, which can be fascinating, could expose opportunities for links, could expose understanding of how they view your site versus your competition or who they think your competition is.

Then there are tons of parameters, like in URL and in anchor, and da, da, da, da. In anchor doesn’t work anymore, never mind about that one.

I have to go faster, because we’re just going to run out of these. Like, come on. Interpreting and leveraging data in Google Search Console. If you don’t know how to use that, Google could be telling you, you have all sorts of errors, and you don’t know what they are.

  • Leveraging topic modeling and extraction. Using all these cool tools that are coming out for better keyword research and better on-page targeting. I talked about a couple of those at MozCon, like MonkeyLearn. There’s the new Moz Context API, which will be coming out soon, around that. There’s the Alchemy API, which a lot of folks really like and use.
  • Identifying and extracting opportunities based on site crawls. You run a Screaming Frog crawl on your site and you’re going, “Oh, here’s all these problems and issues.” If you don’t have these technical skills, you can’t diagnose that. You can’t figure out what’s wrong. You can’t figure out what needs fixing, what needs addressing.
  • Using rich snippet format to stand out in the SERPs. This is just getting a better click-through rate, which can seriously help your site and obviously your traffic.
  • Applying Google-supported protocols like rel=canonical, meta description, rel=prev/next, hreflang, robots.txt, meta robots, x robots, NOODP, XML sitemaps, rel=nofollow. The list goes on and on and on. If you’re not technical, you don’t know what those are, you think you just need to write good content and lower your bounce rate, it’s not going to work.
  • Using APIs from services like AdWords or MozScape, or hrefs from Majestic, or SEM refs from SearchScape or Alchemy API. Those APIs can have powerful things that they can do for your site. There are some powerful problems they could help you solve if you know how to use them. It’s actually not that hard to write something, even inside a Google Doc or Excel, to pull from an API and get some data in there. There’s a bunch of good tutorials out there. Richard Baxter has one, Annie Cushing has one, I think Distilled has some. So really cool stuff there.
  • Diagnosing page load speed issues, which goes right to what Jayson was talking about. You need that fast-loading page. Well, if you don’t have any technical skills, you can’t figure out why your page might not be loading quickly.
  • Diagnosing mobile friendliness issues
  • Advising app developers on the new protocols around App deep linking, so that you can get the content from your mobile apps into the web search results on mobile devices. Awesome. Super powerful. Potentially crazy powerful, as mobile search is becoming bigger than desktop.

Okay, I’m going to take a deep breath and relax. I don’t know Jayson’s intention, and in fact, if he were in this room, he’d be like, “No, I totally agree with all those things. I wrote the article in a rush. I had no idea it was going to be big. I was just trying to make the broader points around you don’t have to be a coder in order to do SEO.” That’s completely fine.

So I’m not going to try and rain criticism down on him. But I think if you’re reading that article, or you’re seeing it in your feed, or your clients are, or your boss is, or other folks are in your world, maybe you can point them to this Whiteboard Friday and let them know, no, that’s not quite right. There’s a ton of technical SEO that is required in 2015 and will be for years to come, I think, that SEOs have to have in order to be effective at their jobs.

All right, everyone. Look forward to some great comments, and we’ll see you again next time for another edition of Whiteboard Friday. Take care.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

I Can’t Drive 155: Meta Descriptions in 2015

Posted by Dr-Pete

For years now, we (and many others) have been recommending keeping your Meta Descriptions shorter than
about 155-160 characters. For months, people have been sending me examples of search snippets that clearly broke that rule, like this one (on a search for “hummingbird food”):

For the record, this one clocks in at 317 characters (counting spaces). So, I set out to discover if these long descriptions were exceptions to the rule, or if we need to change the rules. I collected the search snippets across the MozCast 10K, which resulted in 92,669 snippets. All of the data in this post was collected on April 13, 2015.

The Basic Data

The minimum snippet length was zero characters. There were 69 zero-length snippets, but most of these were the new generation of answer box, that appears organic but doesn’t have a snippet. To put it another way, these were misidentified as organic by my code. The other 0-length snippets were local one-boxes that appeared as organic but had no snippet, such as this one for “chichen itza”:

These zero-length snippets were removed from further analysis, but considering that they only accounted for 0.07% of the total data, they didn’t really impact the conclusions either way. The shortest legitimate, non-zero snippet was 7 characters long, on a search for “geek and sundry”, and appears to have come directly from the site’s meta description:

The maximum snippet length that day (this is a highly dynamic situation) was 372 characters. The winner appeared on a search for “benefits of apple cider vinegar”:

The average length of all of the snippets in our data set (not counting zero-length snippets) was 143.5 characters, and the median length was 152 characters. Of course, this can be misleading, since some snippets are shorter than the limit and others are being artificially truncated by Google. So, let’s dig a bit deeper.

The Bigger Picture

To get a better idea of the big picture, let’s take a look at the display length of all 92,600 snippets (with non-zero length), split into 20-character buckets (0-20, 21-40, etc.):

Most of the snippets (62.1%) cut off as expected, right in the 141-160 character bucket. Of course, some snippets were shorter than that, and didn’t need to be cut off, and some broke the rules. About 1% (1,010) of the snippets in our data set measured 200 or more characters. That’s not a huge number, but it’s enough to take seriously.

That 141-160 character bucket is dwarfing everything else, so let’s zoom in a bit on the cut-off range, and just look at snippets in the 120-200 character range (in this case, by 5-character bins):

Zooming in, the bulk of the snippets are displaying at lengths between about 146-165 characters. There are plenty of exceptions to the 155-160 character guideline, but for the most part, they do seem to be exceptions.

Finally, let’s zoom in on the rule-breakers. This is the distribution of snippets displaying 191+ characters, bucketed in 10-character bins (191-200, 201-210, etc.):

Please note that the Y-axis scale is much smaller than in the previous 2 graphs, but there is a pretty solid spread, with a decent chunk of snippets displaying more than 300 characters.

Without looking at every original meta description tag, it’s very difficult to tell exactly how many snippets have been truncated by Google, but we do have a proxy. Snippets that have been truncated end in an ellipsis (…), which rarely appears at the end of a natural description. In this data set, more than half of all snippets (52.8%) ended in an ellipsis, so we’re still seeing a lot of meta descriptions being cut off.

I should add that, unlike titles/headlines, it isn’t clear whether Google is cutting off snippets by pixel width or character count, since that cut-off is done on the server-side. In most cases, Google will cut before the end of the second line, but sometimes they cut well before this, which could suggest a character-based limit. They also cut off at whole words, which can make the numbers a bit tougher to interpret.

The Cutting Room Floor

There’s another difficulty with telling exactly how many meta descriptions Google has modified – some edits are minor, and some are major. One minor edit is when Google adds some additional information to a snippet, such as a date at the beginning. Here’s an example (from a search for “chicken pox”):

With the date (and minus the ellipsis), this snippet is 164 characters long, which suggests Google isn’t counting the added text against the length limit. What’s interesting is that the rest comes directly from the meta description on the site, except that the site’s description starts with “Chickenpox.” and Google has removed that keyword. As a human, I’d say this matches the meta description, but a bot has a very hard time telling a minor edit from a complete rewrite.

Another minor rewrite occurs in snippets that start with search result counts:

Here, we’re at 172 characters (with spaces and minus the ellipsis), and Google has even let this snippet roll over to a third line. So, again, it seems like the added information at the beginning isn’t counting against the length limit.

All told, 11.6% of the snippets in our data set had some kind of Google-generated data, so this type of minor rewrite is pretty common. Even if Google honors most of your meta description, you may see small edits.

Let’s look at our big winner, the 372-character description. Here’s what we saw in the snippet:

Jan 26, 2015 – Health• Diabetes Prevention: Multiple studies have shown a correlation between apple cider vinegar and lower blood sugar levels. … • Weight Loss: Consuming apple cider vinegar can help you feel more full, which can help you eat less. … • Lower Cholesterol: … • Detox: … • Digestive Aid: … • Itchy or Sunburned Skin: … • Energy Boost:1 more items

So, what about the meta description? Here’s what we actually see in the tag:

Were you aware of all the uses of apple cider vinegar? From cleansing to healing, to preventing diabetes, ACV is a pantry staple you need in your home.

That’s a bit more than just a couple of edits. So, what’s happening here? Well, there’s a clue on that same page, where we see yet another rule-breaking snippet:

You might be wondering why this snippet is any more interesting than the other one. If you could see the top of the SERP, you’d know why, because it looks something like this:

Google is automatically extracting list-style data from these pages to fuel the expansion of the Knowledge Graph. In one case, that data is replacing a snippet
and going directly into an answer box, but they’re performing the same translation even for some other snippets on the page.

So, does every 2nd-generation answer box yield long snippets? After 3 hours of inadvisable mySQL queries, I can tell you that the answer is a resounding “probably not”. You can have 2nd-gen answer boxes without long snippets and you can have long snippets without 2nd-gen answer boxes,
but there does appear to be a connection between long snippets and Knowledge Graph in some cases.

One interesting connection is that Google has begun bolding keywords that seem like answers to the query (and not just synonyms for the query). Below is an example from a search for “mono symptoms”. There’s an answer box for this query, but the snippet below is not from the site in the answer box:

Notice the bolded words – “fatigue”, “sore throat”, “fever”, “headache”, “rash”. These aren’t synonyms for the search phrase; these are actual symptoms of mono. This data isn’t coming from the meta description, but from a bulleted list on the target page. Again, it appears that Google is trying to use the snippet to answer a question, and has gone well beyond just matching keywords.

Just for fun, let’s look at one more, where there’s no clear connection to the Knowledge Graph. Here’s a snippet from a search for “sons of anarchy season 4”:

This page has no answer box, and the information extracted is odd at best. The snippet bears little or no resemblance to the site’s meta description. The number string at the beginning comes out of a rating widget, and some of the text isn’t even clearly available on the page. This seems to be an example of Google acknowledging IMDb as a high-authority site and desperately trying to match any text they can to the query, resulting in a Frankenstein’s snippet.

The Final Verdict

If all of this seems confusing, that’s probably because it is. Google is taking a lot more liberties with snippets these days, both to better match queries, to add details they feel are important, or to help build and support the Knowledge Graph.

So, let’s get back to the original question – is it time to revise the 155(ish) character guideline? My gut feeling is: not yet. To begin with, the vast majority of snippets are still falling in that 145-165 character range. In addition, the exceptions to the rule are not only atypical situations, but in most cases those long snippets don’t seem to represent the original meta description. In other words, even if Google does grant you extra characters, they probably won’t be the extra characters you asked for in the first place.

Many people have asked: “How do I make sure that Google shows my meta description as is?” I’m afraid the answer is: “You don’t.” If this is very important to you, I would recommend keeping your description below the 155-character limit, and making sure that it’s a good match to your target keyword concepts. I suspect Google is going to take more liberties with snippets over time, and we’re going to have to let go of our obsession with having total control over the SERPs.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

​The 3 Most Common SEO Problems on Listings Sites

Posted by Dom-Woodman

Listings sites have a very specific set of search problems that you don’t run into everywhere else. In the day I’m one of Distilled’s analysts, but by night I run a job listings site, teflSearch. So, for my first Moz Blog post I thought I’d cover the three search problems with listings sites that I spent far too long agonising about.

Quick clarification time: What is a listings site (i.e. will this post be useful for you)?

The classic listings site is Craigslist, but plenty of other sites act like listing sites:

  • Job sites like Monster
  • E-commerce sites like Amazon
  • Matching sites like Spareroom

1. Generating quality landing pages

The landing pages on listings sites are incredibly important. These pages are usually the primary drivers of converting traffic, and they’re usually generated automatically (or are occasionally custom category pages) .

For example, if I search “Jobs in Manchester“, you can see nearly every result is an automatically generated landing page or category page.

There are three common ways to generate these pages (occasionally a combination of more than one is used):

  • Faceted pages: These are generated by facets—groups of preset filters that let you filter the current search results. They usually sit on the left-hand side of the page.
  • Category pages: These pages are listings which have already had a filter applied and can’t be changed. They’re usually custom pages.
  • Free-text search pages: These pages are generated by a free-text search box.

Those definitions are still bit general; let’s clear them up with some examples:

Amazon uses a combination of categories and facets. If you click on browse by department you can see all the category pages. Then on each category page you can see a faceted search. Amazon is so large that it needs both.

Indeed generates its landing pages through free text search, for example if we search for “IT jobs in manchester” it will generate: IT jobs in manchester.

teflSearch generates landing pages using just facets. The jobs in China landing page is simply a facet of the main search page.

Each method has its own search problems when used for generating landing pages, so lets tackle them one by one.


Aside

Facets and free text search will typically generate pages with parameters e.g. a search for “dogs” would produce:

www.mysite.com?search=dogs

But to make the URL user friendly sites will often alter the URLs to display them as folders

www.mysite.com/results/dogs/

These are still just ordinary free text search and facets, the URLs are just user friendly. (They’re a lot easier to work with in robots.txt too!)


Free search (& category) problems

If you’ve decided the base of your search will be a free text search, then we’ll have two major goals:

  • Goal 1: Helping search engines find your landing pages
  • Goal 2: Giving them link equity.

Solution

Search engines won’t use search boxes and so the solution to both problems is to provide links to the valuable landing pages so search engines can find them.

There are plenty of ways to do this, but two of the most common are:

  • Category links alongside a search

    Photobucket uses a free text search to generate pages, but if we look at example search for photos of dogs, we can see the categories which define the landing pages along the right-hand side. (This is also an example of URL friendly searches!)

  • Putting the main landing pages in a top-level menu

    Indeed also uses free text to generate landing pages, and they have a browse jobs section which contains the URL structure to allow search engines to find all the valuable landing pages.

Breadcrumbs are also often used in addition to the two above and in both the examples above, you’ll find breadcrumbs that reinforce that hierarchy.

Category (& facet) problems

Categories, because they tend to be custom pages, don’t actually have many search disadvantages. Instead it’s the other attributes that make them more or less desirable. You can create them for the purposes you want and so you typically won’t have too many problems.

However, if you also use a faceted search in each category (like Amazon) to generate additional landing pages, then you’ll run into all the problems described in the next section.

At first facets seem great, an easy way to generate multiple strong relevant landing pages without doing much at all. The problems appear because people don’t put limits on facets.

Lets take the job page on teflSearch. We can see it has 18 facets each with many options. Some of these options will generate useful landing pages:

The China facet in countries will generate “Jobs in China” that’s a useful landing page.

On the other hand, the “Conditional Bonus” facet will generate “Jobs with a conditional bonus,” and that’s not so great.

We can also see that the options within a single facet aren’t always useful. As of writing, I have a single job available in Serbia. That’s not a useful search result, and the poor user engagement combined with the tiny amount of content will be a strong signal to Google that it’s thin content. Depending on the scale of your site it’s very easy to generate a mass of poor-quality landing pages.

Facets generate other problems too. The primary one being they can create a huge amount of duplicate content and pages for search engines to get lost in. This is caused by two things: The first is the sheer number of possibilities they generate, and the second is because selecting facets in different orders creates identical pages with different URLs.

We end up with four goals for our facet-generated landing pages:

  • Goal 1: Make sure our searchable landing pages are actually worth landing on, and that we’re not handing a mass of low-value pages to the search engines.
  • Goal 2: Make sure we don’t generate multiple copies of our automatically generated landing pages.
  • Goal 3: Make sure search engines don’t get caught in the metaphorical plastic six-pack rings of our facets.
  • Goal 4: Make sure our landing pages have strong internal linking.

The first goal needs to be set internally; you’re always going to be the best judge of the number of results that need to present on a page in order for it to be useful to a user. I’d argue you can rarely ever go below three, but it depends both on your business and on how much content fluctuates on your site, as the useful landing pages might also change over time.

We can solve the next three problems as group. There are several possible solutions depending on what skills and resources you have access to; here are two possible solutions:

Category/facet solution 1: Blocking the majority of facets and providing external links
  • Easiest method
  • Good if your valuable category pages rarely change and you don’t have too many of them.
  • Can be problematic if your valuable facet pages change a lot

Nofollow all your facet links, and noindex and block category pages which aren’t valuable or are deeper than x facet/folder levels into your search using robots.txt.

You set x by looking at where your useful facet pages exist that have search volume. So, for example, if you have three facets for televisions: manufacturer, size, and resolution, and even combinations of all three have multiple results and search volume, then you could set you index everything up to three levels.

On the other hand, if people are searching for three levels (e.g. “Samsung 42″ Full HD TV”) but you only have one or two results for three-level facets, then you’d be better off indexing two levels and letting the product pages themselves pick up long-tail traffic for the third level.

If you have valuable facet pages that exist deeper than 1 facet or folder into your search, then this creates some duplicate content problems dealt with in the aside “Indexing more than 1 level of facets” below.)

The immediate problem with this set-up, however, is that in one stroke we’ve removed most of the internal links to our category pages, and by no-following all the facet links, search engines won’t be able to find your valuable category pages.

In order re-create the linking, you can add a top level drop down menu to your site containing the most valuable category pages, add category links elsewhere on the page, or create a separate part of the site with links to the valuable category pages.

The top level drop down menu you can see on teflSearch (it’s the search jobs menu), the other two examples are demonstrated in Photobucket and Indeed respectively in the previous section.

The big advantage for this method is how quick it is to implement, it doesn’t require any fiddly internal logic and adding an extra menu option is usually minimal effort.

Category/facet solution 2: Creating internal logic to work with the facets

  • Requires new internal logic
  • Works for large numbers of category pages with value that can change rapidly

There are four parts to the second solution:

  1. Select valuable facet categories and allow those links to be followed. No-follow the rest.
  2. No-index all pages that return a number of items below the threshold for a useful landing page
  3. No-follow all facets on pages with a search depth greater than x.
  4. Block all facet pages deeper than x level in robots.txt

As with the last solution, x is set by looking at where your useful facet pages exist that have search volume (full explanation in the first solution), and if you’re indexing more than one level you’ll need to check out the aside below to see how to deal with the duplicate content it generates.


Aside: Indexing more than one level of facets

If you want more than one level of facets to be indexable, then this will create certain problems.

Suppose you have a facet for size:

  • Televisions: Size: 46″, 44″, 42″

And want to add a brand facet:

  • Televisions: Brand: Samsung, Panasonic, Sony

This will create duplicate content because the search engines will be able to follow your facets in both orders, generating:

  • Television – 46″ – Samsung
  • Television – Samsung – 46″

You’ll have to either rel canonical your duplicate pages with another rule or set up your facets so they create a single unique URL.

You also need to be aware that each followable facet you add will multiply with each other followable facet and it’s very easy to generate a mass of pages for search engines to get stuck in. Depending on your setup you might need to block more paths in robots.txt or set-up more logic to prevent them being followed.

Letting search engines index more than one level of facets adds a lot of possible problems; make sure you’re keeping track of them.


2. User-generated content cannibalization

This is a common problem for listings sites (assuming they allow user generated content). If you’re reading this as an e-commerce site who only lists their own products, you can skip this one.

As we covered in the first area, category pages on listings sites are usually the landing pages aiming for the valuable search terms, but as your users start generating pages they can often create titles and content that cannibalise your landing pages.

Suppose you’re a job site with a category page for PHP Jobs in Greater Manchester. If a recruiter then creates a job advert for PHP Jobs in Greater Manchester for the 4 positions they currently have, you’ve got a duplicate content problem.

This is less of a problem when your site is large and your categories mature, it will be obvious to any search engine which are your high value category pages, but at the start where you’re lacking authority and individual listings might contain more relevant content than your own search pages this can be a problem.

Solution 1: Create structured titles

Set the <title> differently than the on-page title. Depending on variables you have available to you can set the title tag programmatically without changing the page title using other information given by the user.

For example, on our imaginary job site, suppose the recruiter also provided the following information in other fields:

  • The no. of positions: 4
  • The primary area: PHP Developer
  • The name of the recruiting company: ABC Recruitment
  • Location: Manchester

We could set the <title> pattern to be: *No of positions* *The primary area* with *recruiter name* in *Location* which would give us:

4 PHP Developers with ABC Recruitment in Manchester

Setting a <title> tag allows you to target long-tail traffic by constructing detailed descriptive titles. In our above example, imagine the recruiter had specified “Castlefield, Manchester” as the location.

All of a sudden, you’ve got a perfect opportunity to pick up long-tail traffic for people searching in Castlefield in Manchester.

On the downside, you lose the ability to pick up long-tail traffic where your users have chosen keywords you wouldn’t have used.

For example, suppose Manchester has a jobs program called “Green Highway.” A job advert title containing “Green Highway” might pick up valuable long-tail traffic. Being able to discover this, however, and find a way to fit it into a dynamic title is very hard.

Solution 2: Use regex to noindex the offending pages

Perform a regex (or string contains) search on your listings titles and no-index the ones which cannabalise your main category pages.

If it’s not possible to construct titles with variables or your users provide a lot of additional long-tail traffic with their own titles, then is a great option. On the downside, you miss out on possible structured long-tail traffic that you might’ve been able to aim for.

Solution 3: De-index all your listings

It may seem rash, but if you’re a large site with a huge number of very similar or low-content listings, you might want to consider this, but there is no common standard. Some sites like Indeed choose to no-index all their job adverts, whereas some other sites like Craigslist index all their individual listings because they’ll drive long tail traffic.

Don’t de-index them all lightly!

3. Constantly expiring content

Our third and final problem is that user-generated content doesn’t last forever. Particularly on listings sites, it’s constantly expiring and changing.

For most use cases I’d recommend 301’ing expired content to a relevant category page, with a message triggered by the redirect notifying the user of why they’ve been redirected. It typically comes out as the best combination of search and UX.

For more information or advice on how to deal with the edge cases, there’s a previous Moz blog post on how to deal with expired content which I think does an excellent job of covering this area.

Summary

In summary, if you’re working with listings sites, all three of the following need to be kept in mind:

  • How are the landing pages generated? If they’re generated using free text or facets have the potential problems been solved?
  • Is user generated content cannibalising the main landing pages?
  • How has constantly expiring content been dealt with?

Good luck listing, and if you’ve had any other tricky problems or solutions you’ve come across working on listings sites lets chat about them in the comments below!

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

Understanding and Applying Moz’s Spam Score Metric – Whiteboard Friday

Posted by randfish

This week, Moz released a new feature that we call Spam Score, which helps you analyze your link profile and weed out the spam (check out the blog post for more info). There have been some fantastic conversations about how it works and how it should (and shouldn’t) be used, and we wanted to clarify a few things to help you all make the best use of the tool.

In today’s Whiteboard Friday, Rand offers more detail on how the score is calculated, just what those spam flags are, and how we hope you’ll benefit from using it.

For reference, here’s a still of this week’s whiteboard. 

Click on the image above to open a high resolution version in a new tab!

Video transcription

Howdy Moz fans, and welcome to another edition of Whiteboard Friday. This week, we’re going to chat a little bit about Moz’s Spam Score. Now I don’t typically like to do Whiteboard Fridays specifically about a Moz project, especially when it’s something that’s in our toolset. But I’m making an exception because there have been so many questions and so much discussion around Spam Score and because I hope the methodology, the way we calculate things, the look at correlation and causation, when it comes to web spam, can be useful for everyone in the Moz community and everyone in the SEO community in addition to being helpful for understanding this specific tool and metric.

The 17-flag scoring system

I want to start by describing the 17 flag system. As you might know, Spam Score is shown as a score from 0 to 17. You either fire a flag or you don’t. Those 17 flags you can see a list of them on the blog post, and we’ll show that in there. Essentially, those flags correlate to the percentage of sites that we found with that count of flags, not those specific flags, just any count of those flags that were penalized or banned by Google. I’ll show you a little bit more in the methodology.

Basically, what this means is for sites that had 0 spam flags, none of the 17 flags that we had fired, that actually meant that 99.5% of those sites were not penalized or banned, on average, in our analysis and 0.5% were. At 3 flags, 4.2% of those sites, that’s actually still a huge number. That’s probably in the millions of domains or subdomains that Google has potentially still banned. All the way down here with 11 flags, it’s 87.3% that we did find banned. That seems pretty risky or penalized. It seems pretty risky. But 12.7% of those is still a very big number, again probably in the hundreds of thousands of unique websites that are not banned but still have these flags.

If you’re looking at a specific subdomain and you’re saying, “Hey, gosh, this only has 3 flags or 4 flags on it, but it’s clearly been penalized by Google, Moz’s score must be wrong,” no, that’s pretty comfortable. That should fit right into those kinds of numbers. Same thing down here. If you see a site that is not penalized but has a number of flags, that’s potentially an indication that you’re in that percentage of sites that we found not to be penalized.

So this is an indication of percentile risk, not a “this is absolutely spam” or “this is absolutely not spam.” The only caveat is anything with, I think, more than 13 flags, we found 100% of those to have been penalized or banned. Maybe you’ll find an odd outlier or two. Probably you won’t.

Correlation ≠ causation

Correlation is not causation. This is something we repeat all the time here at Moz and in the SEO community. We do a lot of correlation studies around these things. I think people understand those very well in the fields of social media and in marketing in general. Certainly in psychology and electoral voting and election polling results, people understand those correlations. But for some reason in SEO we sometimes get hung up on this.

I want to be clear. Spam flags and the count of spam flags correlates with sites we saw Google penalize. That doesn’t mean that any of the flags or combinations of flags actually cause the penalty. It could be that the things that are flags are not actually connected to the reasons Google might penalize something at all. Those could be totally disconnected.

We are not trying to say with the 17 flags these are causes for concern or you need to fix these. We are merely saying this feature existed on this website when we crawled it, or it had this feature, maybe it still has this feature. Therefore, we saw this count of these features that correlates to this percentile number, so we’re giving you that number. That’s all that the score intends to say. That’s all it’s trying to show. It’s trying to be very transparent about that. It’s not trying to say you need to fix these.

A lot of flags and features that are measured are perfectly fine things to have on a website, like no social accounts or email links. That’s a totally reasonable thing to have, but it is a flag because we saw it correlate. A number in your domain name, I think it’s fine if you want to have a number in your domain name. There’s plenty of good domains that have a numerical character in them. That’s cool.

TLD extension that happens to be used by lots of spammers, like a .info or a .cc or a number of other ones, that’s also totally reasonable. Just because lots of spammers happen to use those TLD extensions doesn’t mean you are necessarily spam because you use one.

Or low link diversity. Maybe you’re a relatively new site. Maybe your niche is very small, so the number of folks who point to your site tends to be small, and lots of the sites that organically naturally link to you editorially happen to link to you from many of their pages, and there’s not a ton of them. That will lead to low link diversity, which is a flag, but it isn’t always necessarily a bad thing. It might still nudge you to try and get some more links because that will probably help you, but that doesn’t mean you are spammy. It just means you fired a flag that correlated with a spam percentile.

The methodology we use

The methodology that we use, for those who are curious — and I do think this is a methodology that might be interesting to potentially apply in other places — is we brainstormed a large list of potential flags, a huge number. We cut that down to the ones we could actually do, because there were some that were just unfeasible for our technology team, our engineering team to do.

Then, we got a huge list, many hundreds of thousands of sites that were penalized or banned. When we say banned or penalized, what we mean is they didn’t rank on page one for either their own domain name or their own brand name, the thing between the
www and the .com or .net or .info or whatever it was. If you didn’t rank for either your full domain name, www and the .com or Moz, that would mean we said, “Hey, you’re penalized or banned.”

Now you might say, “Hey, Rand, there are probably some sites that don’t rank on page one for their own brand name or their own domain name, but aren’t actually penalized or banned.” I agree. That’s a very small number. Statistically speaking, it probably is not going to be impactful on this data set. Therefore, we didn’t have to control for that. We ended up not controlling for that.

Then we found which of the features that we ideated, brainstormed, actually correlated with the penalties and bans, and we created the 17 flags that you see in the product today. There are lots things that I thought were going to correlate, for example spammy-looking anchor text or poison keywords on the page, like Viagra, Cialis, Texas Hold’em online, pornography. Those things, not all of them anyway turned out to correlate well, and so they didn’t make it into the 17 flags list. I hope over time we’ll add more flags. That’s how things worked out.

How to apply the Spam Score metric

When you’re applying Spam Score, I think there are a few important things to think about. Just like domain authority, or page authority, or a metric from Majestic, or a metric from Google, or any other kind of metric that you might come up with, you should add it to your toolbox and to your metrics where you find it useful. I think playing around with spam, experimenting with it is a great thing. If you don’t find it useful, just ignore it. It doesn’t actually hurt your website. It’s not like this information goes to Google or anything like that. They have way more sophisticated stuff to figure out things on their end.

Do not just disavow everything with seven or more flags, or eight or more flags, or nine or more flags. I think that we use the color coding to indicate 0% to 10% of these flag counts were penalized or banned, 10% to 50% were penalized or banned, or 50% or above were penalized or banned. That’s why you see the green, orange, red. But you should use the count and line that up with the percentile. We do show that inside the tool as well.

Don’t just take everything and disavow it all. That can get you into serious trouble. Remember what happened with Cyrus. Cyrus Shepard, Moz’s head of content and SEO, he disavowed all the backlinks to its site. It took more than a year for him to rank for anything again. Google almost treated it like he was banned, not completely, but they seriously took away all of his link power and didn’t let him back in, even though he changed the disavow file and all that.

Be very careful submitting disavow files. You can hurt yourself tremendously. The reason we offer it in disavow format is because many of the folks in our customer testing said that’s how they wanted it so they could copy and paste, so they could easily review, so they could get it in that format and put it into their already existing disavow file. But you should not do that. You’ll see a bunch of warnings if you try and generate a disavow file. You even have to edit your disavow file before you can submit it to Google, because we want to be that careful that you don’t go and submit.

You should expect the Spam Score accuracy. If you’re doing spam investigation, you’re probably looking at spammier sites. If you’re looking at a random hundred sites, you should expect that the flags would correlate with the percentages. If I look at a random hundred 4 flag Spam Score sites, 7.5% of those I would expect on average to be penalized or banned. If you are therefore seeing sites that don’t fit those, they probably fit into the percentiles that were not penalized, or up here were penalized, down here weren’t penalized, that kind of thing.

Hopefully, you find Spam Score useful and interesting and you add it to your toolbox. We would love to hear from you on iterations and ideas that you’ve got for what we can do in the future, where else you’d like to see it, and where you’re finding it useful/not useful. That would be great.

Hopefully, you’ve enjoyed this edition of Whiteboard Friday and will join us again next week. Thanks so much. Take care.

Video transcription by Speechpad.com

ADDITION FROM RAND: I also urge folks to check out Marie Haynes’ excellent Start-to-Finish Guide to Using Google’s Disavow Tool. We’re going to update the feature to link to that as well.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it