The perfect local SEO landing page

Columnist Marcus Miller shares tips, advice and an infographic on creating highly optimized, high-converting landing pages for local SEO.

The post The perfect local SEO landing page appeared first on Search Engine Land.

Please visit Search Engine Land for the full article.

Reblogged 1 year ago from feeds.searchengineland.com

Controlling Search Engine Crawlers for Better Indexation and Rankings – Whiteboard Friday

Posted by randfish

When should you disallow search engines in your robots.txt file, and when should you use meta robots tags in a page header? What about nofollowing links? In today’s Whiteboard Friday, Rand covers these tools and their appropriate use in four situations that SEOs commonly find themselves facing.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

Video transcription

Howdy Moz fans, and welcome to another edition of Whiteboard Friday. This week we’re going to talk about controlling search engine crawlers, blocking bots, sending bots where we want, restricting them from where we don’t want them to go. We’re going to talk a little bit about crawl budget and what you should and shouldn’t have indexed.

As a start, what I want to do is discuss the ways in which we can control robots. Those include the three primary ones: robots.txt, meta robots, and—well, the nofollow tag is a little bit less about controlling bots.

There are a few others that we’re going to discuss as well, including Webmaster Tools (Search Console) and URL status codes. But let’s dive into those first few first.

Robots.txt lives at yoursite.com/robots.txt, it tells crawlers what they should and shouldn’t access, it doesn’t always get respected by Google and Bing. So a lot of folks when you say, “hey, disallow this,” and then you suddenly see those URLs popping up and you’re wondering what’s going on, look—Google and Bing oftentimes think that they just know better. They think that maybe you’ve made a mistake, they think “hey, there’s a lot of links pointing to this content, there’s a lot of people who are visiting and caring about this content, maybe you didn’t intend for us to block it.” The more specific you get about an individual URL, the better they usually are about respecting it. The less specific, meaning the more you use wildcards or say “everything behind this entire big directory,” the worse they are about necessarily believing you.

Meta robots—a little different—that lives in the headers of individual pages, so you can only control a single page with a meta robots tag. That tells the engines whether or not they should keep a page in the index, and whether they should follow the links on that page, and it’s usually a lot more respected, because it’s at an individual-page level; Google and Bing tend to believe you about the meta robots tag.

And then the nofollow tag, that lives on an individual link on a page. It doesn’t tell engines where to crawl or not to crawl. All it’s saying is whether you editorially vouch for a page that is being linked to, and whether you want to pass the PageRank and link equity metrics to that page.

Interesting point about meta robots and robots.txt working together (or not working together so well)—many, many folks in the SEO world do this and then get frustrated.

What if, for example, we take a page like “blogtest.html” on our domain and we say “all user agents, you are not allowed to crawl blogtest.html. Okay—that’s a good way to keep that page away from being crawled, but just because something is not crawled doesn’t necessarily mean it won’t be in the search results.

So then we have our SEO folks go, “you know what, let’s make doubly sure that doesn’t show up in search results; we’ll put in the meta robots tag:”

<meta name="robots" content="noindex, follow">

So, “noindex, follow” tells the search engine crawler they can follow the links on the page, but they shouldn’t index this particular one.

Then, you go and run a search for “blog test” in this case, and everybody on the team’s like “What the heck!? WTF? Why am I seeing this page show up in search results?”

The answer is, you told the engines that they couldn’t crawl the page, so they didn’t. But they are still putting it in the results. They’re actually probably not going to include a meta description; they might have something like “we can’t include a meta description because of this site’s robots.txt file.” The reason it’s showing up is because they can’t see the noindex; all they see is the disallow.

So, if you want something truly removed, unable to be seen in search results, you can’t just disallow a crawler. You have to say meta “noindex” and you have to let them crawl it.

So this creates some complications. Robots.txt can be great if we’re trying to save crawl bandwidth, but it isn’t necessarily ideal for preventing a page from being shown in the search results. I would not recommend, by the way, that you do what we think Twitter recently tried to do, where they tried to canonicalize www and non-www by saying “Google, don’t crawl the www version of twitter.com.” What you should be doing is rel canonical-ing or using a 301.

Meta robots—that can allow crawling and link-following while disallowing indexation, which is great, but it requires crawl budget and you can still conserve indexing.

The nofollow tag, generally speaking, is not particularly useful for controlling bots or conserving indexation.

Webmaster Tools (now Google Search Console) has some special things that allow you to restrict access or remove a result from the search results. For example, if you have 404’d something or if you’ve told them not to crawl something but it’s still showing up in there, you can manually say “don’t do that.” There are a few other crawl protocol things that you can do.

And then URL status codes—these are a valid way to do things, but they’re going to obviously change what’s going on on your pages, too.

If you’re not having a lot of luck using a 404 to remove something, you can use a 410 to permanently remove something from the index. Just be aware that once you use a 410, it can take a long time if you want to get that page re-crawled or re-indexed, and you want to tell the search engines “it’s back!” 410 is permanent removal.

301—permanent redirect, we’ve talked about those here—and 302, temporary redirect.

Now let’s jump into a few specific use cases of “what kinds of content should and shouldn’t I allow engines to crawl and index” in this next version…

[Rand moves at superhuman speed to erase the board and draw part two of this Whiteboard Friday. Seriously, we showed Roger how fast it was, and even he was impressed.]

Four crawling/indexing problems to solve

So we’ve got these four big problems that I want to talk about as they relate to crawling and indexing.

1. Content that isn’t ready yet

The first one here is around, “If I have content of quality I’m still trying to improve—it’s not yet ready for primetime, it’s not ready for Google, maybe I have a bunch of products and I only have the descriptions from the manufacturer and I need people to be able to access them, so I’m rewriting the content and creating unique value on those pages… they’re just not ready yet—what should I do with those?”

My options around crawling and indexing? If I have a large quantity of those—maybe thousands, tens of thousands, hundreds of thousands—I would probably go the robots.txt route. I’d disallow those pages from being crawled, and then eventually as I get (folder by folder) those sets of URLs ready, I can then allow crawling and maybe even submit them to Google via an XML sitemap.

If I’m talking about a small quantity—a few dozen, a few hundred pages—well, I’d probably just use the meta robots noindex, and then I’d pull that noindex off of those pages as they are made ready for Google’s consumption. And then again, I would probably use the XML sitemap and start submitting those once they’re ready.

2. Dealing with duplicate or thin content

What about, “Should I noindex, nofollow, or potentially disallow crawling on largely duplicate URLs or thin content?” I’ve got an example. Let’s say I’m an ecommerce shop, I’m selling this nice Star Wars t-shirt which I think is kind of hilarious, so I’ve got starwarsshirt.html, and it links out to a larger version of an image, and that’s an individual HTML page. It links out to different colors, which change the URL of the page, so I have a gray, blue, and black version. Well, these four pages are really all part of this same one, so I wouldn’t recommend disallowing crawling on these, and I wouldn’t recommend noindexing them. What I would do there is a rel canonical.

Remember, rel canonical is one of those things that can be precluded by disallowing. So, if I were to disallow these from being crawled, Google couldn’t see the rel canonical back, so if someone linked to the blue version instead of the default version, now I potentially don’t get link credit for that. So what I really want to do is use the rel canonical, allow the indexing, and allow it to be crawled. If you really feel like it, you could also put a meta “noindex, follow” on these pages, but I don’t really think that’s necessary, and again that might interfere with the rel canonical.

3. Passing link equity without appearing in search results

Number three: “If I want to pass link equity (or at least crawling) through a set of pages without those pages actually appearing in search results—so maybe I have navigational stuff, ways that humans are going to navigate through my pages, but I don’t need those appearing in search results—what should I use then?”

What I would say here is, you can use the meta robots to say “don’t index the page, but do follow the links that are on that page.” That’s a pretty nice, handy use case for that.

Do NOT, however, disallow those in robots.txt—many, many folks make this mistake. What happens if you disallow crawling on those, Google can’t see the noindex. They don’t know that they can follow it. Granted, as we talked about before, sometimes Google doesn’t obey the robots.txt, but you can’t rely on that behavior. Trust that the disallow in robots.txt will prevent them from crawling. So I would say, the meta robots “noindex, follow” is the way to do this.

4. Search results-type pages

Finally, fourth, “What should I do with search results-type pages?” Google has said many times that they don’t like your search results from your own internal engine appearing in their search results, and so this can be a tricky use case.

Sometimes a search result page—a page that lists many types of results that might come from a database of types of content that you’ve got on your site—could actually be a very good result for a searcher who is looking for a wide variety of content, or who wants to see what you have on offer. Yelp does this: When you say, “I’m looking for restaurants in Seattle, WA,” they’ll give you what is essentially a list of search results, and Google does want those to appear because that page provides a great result. But you should be doing what Yelp does there, and make the most common or popular individual sets of those search results into category-style pages. A page that provides real, unique value, that’s not just a list of search results, that is more of a landing page than a search results page.

However, that being said, if you’ve got a long tail of these, or if you’d say “hey, our internal search engine, that’s really for internal visitors only—it’s not useful to have those pages show up in search results, and we don’t think we need to make the effort to make those into category landing pages.” Then you can use the disallow in robots.txt to prevent those.

Just be cautious here, because I have sometimes seen an over-swinging of the pendulum toward blocking all types of search results, and sometimes that can actually hurt your SEO and your traffic. Sometimes those pages can be really useful to people. So check your analytics, and make sure those aren’t valuable pages that should be served up and turned into landing pages. If you’re sure, then go ahead and disallow all your search results-style pages. You’ll see a lot of sites doing this in their robots.txt file.

That being said, I hope you have some great questions about crawling and indexing, controlling robots, blocking robots, allowing robots, and I’ll try and tackle those in the comments below.

We’ll look forward to seeing you again next week for another edition of Whiteboard Friday. Take care!

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 2 years ago from tracking.feedpress.it

8 Ways Content Marketers Can Hack Facebook Multi-Product Ads

Posted by Alan_Coleman

The trick most content marketers are missing

Creating great content is the first half of success in content marketing. Getting quality content read by, and amplified to, a relevant audience is the oft overlooked second half of success. Facebook can be a content marketer’s best friend for this challenge. For reach, relevance and amplification potential, Facebook is unrivaled.

  1. Reach: 1 in 6 mobile minutes on planet earth is somebody reading something on Facebook.
  2. Relevance: Facebook is a lean mean interest and demo targeting machine. There is no online or offline media that owns as much juicy interest and demographic information on its audience and certainly no media has allowed advertisers to utilise this information as effectively as Facebook has.
  3. Amplification: Facebook is literally built to encourage sharing. Here’s the first 10 words from their mission statement: “Facebook’s mission is to give people the power to share…”, Enough said!

Because of these three digital marketing truths, if a content marketer gets their paid promotion* right on Facebook, the battle for eyeballs and amplification is already won.

For this reason it’s crucial that content marketers keep a close eye on Facebook advertising innovations and seek out ways to use them in new and creative ways.

In this post I will share with you eight ways we’ve hacked a new Facebook ad format to deliver content marketing success.

Multi-Product Ads (MPAs)

In 2014, Facebook unveiled multi-product ads (MPAs) for US advertisers, we got them in Europe earlier this year. They allow retailers to show multiple products in a carousel-type ad unit.

They look like this:

If the user clicks on the featured product, they are guided directly to the landing page for that specific product, from where they can make a purchase.

You could say MPAs are Facebook’s answer to Google Shopping.

Facebook’s mistake is a content marketer’s gain

I believe Facebook has misunderstood how people want to use their social network and the transaction-focused format is OK at best for selling products. People aren’t really on Facebook to hit the “buy now” button. I’m a daily Facebook user and I can’t recall a time this year where I have gone directly from Facebook to an e-commerce website and transacted. Can you remember a recent time when you did?

So, this isn’t an innovation that removes a layer of friction from something that we are all doing online already (as the most effective innovations do). Instead, it’s a bit of a “hit and hope” that, by providing this functionality, Facebook would encourage people to try to buy online in a way they never have before.

The Wolfgang crew felt the MPA format would be much more useful to marketers and users if they were leveraging Facebook for the behaviour we all demonstrate on the platform every day, guiding users to relevant content. We attempted to see if Facebook Ads Manager would accept MPAs promoting content rather than products. We plugged in the images, copy and landing pages, hit “place order”, and lo and behold the ads became active. We’re happy to say that the engagement rates, and more importantly the amplification rates, are fantastic!

Multi-Content Ads

We’ve re-invented the MPA format for multi-advertisers in multi-ways, eight ways to be exact! Here’s eight MPA Hacks that have worked well for us. All eight hacks use the MPA format to promote content rather than promote products.

Hack #1: Multi-Package Ads

Our first variation wasn’t a million miles away from multi-product ads; we were promoting the various packages offered by a travel operator.

By looking at the number of likes, comments, and shares (in blue below the ads) you can see the ads were a hit with Facebook users and they earned lots of free engagement and amplification.

NB: If you have selected “clicks to website” as your advertising objective, all those likes, comments and shares are free!

Independent Travel Multi Product Ad

The ad sparked plenty of conversation amongst Facebook friends in the comments section.

Comments on a Facebook MPA

Hack #2: Multi-Offer Ads

Everybody knows the Internet loves a bargain. So we decided to try another variation moving away from specific packages, focusing instead on deals for a different travel operator.

Here’s how the ads looked:

These ads got valuable amplification beyond the share. In the comments section, you can see people tagging specific friends. This led to the MPAs receiving further amplification, and a very targeted and personalised form of amplification to boot.

Abbey Travel Facebook Ad Comments

Word of mouth referrals have been a trader’s best friend since the stone age. These “personalised” word of mouth referrals en masse are a powerful marketing proposition. It’s worth mentioning again that those engagements are free!

Hack #3: Multi-Locations Ads

Putting the Lo in SOLOMO.

This multi-product feed ad was hacked to promote numerous locations of a waterpark. “Where to go?” is among the first questions somebody asks when researching a holiday. In creating this top of funnel content, we can communicate with our target audience at the very beginning of their research process. A simple truth of digital marketing is: the more interactions you have with your target market on their journey to purchase, the more likely they are to seal the deal with you when it comes time to hit the “buy now” button. Starting your relationship early gives you an advantage over those competitors who are hanging around the bottom of the purchase funnel hoping to make a quick and easy conversion.

Abbey Travel SplashWorld Facebook MPA

What was surprising here, was that because we expected to reach people at the very beginning of their research journey, we expected the booking enquiries to be some time away. What actually happened was these ads sparked an enquiry frenzy as Facebook users could see other people enquiring and the holidays selling out in real time.

Abbey Travel comments and replies

In fact nearly all of the 35 comments on this ad were booking enquiries. This means what we were measuring as an “engagement” was actually a cold hard “conversion”! You don’t need me to tell you a booking enquiry is far closer to the money than a Facebook like.

The three examples outlined so far are for travel companies. Travel is a great fit for Facebook as it sits naturally in the Facebook feed, my Facebook feed is full of envy-inducing friends’ holiday pictures right now. Another interesting reason why travel is a great fit for Facebook ads is because typically there are multiple parties to a travel purchase. What happened here is the comments section actually became a very visible and measurable forum for discussion between friends and family before becoming a stampede inducing medium of enquiry.

So, stepping outside of the travel industry, how do other industries fare with hacked MPAs?

Hack #3a: Multi-Location Ads (combined with location targeting)

Location, location, location. For a property listings website, we applied location targeting and repeated our Multi-Location Ad format to advertise properties for sale to people in and around that location.

Hack #4: Multi-Big Content Ad

“The future of big content is multi platform”

– Cyrus Shepard

The same property website had produced a report and an accompanying infographic to provide their audience with unique and up-to-the-minute market information via their blog. We used the MPA format to promote the report, the infographic and the search rentals page of the website. This brought their big content piece to a larger audience via a new platform.

Rental Report Multi Product Ad

Hack #5: Multi-Episode Ad

This MPA hack was for an online TV player. As you can see we advertised the most recent episodes of a TV show set in a fictional Dublin police station, Red Rock.

Engagement was high, opinion was divided.

TV3s Red Rock viewer feedback

LOL.

Hack #6: Multi-People Ads

In the cosmetic surgery world, past patients’ stories are valuable marketing material. Particularly when the past patients are celebrities. We recycled some previously published stories from celebrity patients using multi-people ads and targeted them to a very specific audience.

Avoca Clinic Multi People Ads

Hack #7: Multi-UGC Ads

Have you witnessed the power of user generated content (UGC) in your marketing yet? We’ve found interaction rates with authentic UGC images can be up to 10 fold of those of the usual stylised images. In order to encourage further UGC, we posted a number of customer’s images in our Multi-UGC Ads.

The CTR on the above ads was 6% (2% is the average CTR for Facebook News feed ads according to our study). Strong CTRs earn you more traffic for your budget. Facebook’s relevancy score lowers your CPC as your CTR increases.

When it comes to the conversion, UGC is a power player, we’ve learned that “customers attracting new customers” is a powerful acquisition tool.

Hack #8: Target past customers for amplification

“Who will support and amplify this content and why?”

– Rand Fishkin

Your happy customers Rand, that’s the who and the why! Check out these Multi-Package Ads targeted to past customers via custom audiences. The Camino walkers have already told all their friends about their great trip, now allow them to share their great experiences on Facebook and connect the tour operator with their Facebook friends via a valuable word of mouth referral. Just look at the ratio of share:likes and shares:comments. Astonishingly sharable ads!

Camino Ways Mulit Product Ads

Targeting past converters in an intelligent manner is a super smart way to find an audience ready to share your content.

How will hacking Multi-Product Ads work for you?

People don’t share ads, but they do share great content. So why not hack MPAs to promote your content and reap the rewards of the world’s greatest content sharing machine: Facebook.

MPAs allow you to tell a richer story by allowing you to promote multiple pieces of content simultaneously. So consider which pieces of content you have that will work well as “content bundles” and who the relevant audience for each “content bundle” is.

As Hack #8 above illustrates, the big wins come when you match a smart use of the format with the clever and relevant targeting Facebook allows. We’re massive fans of custom audiences so if you aren’t sure where to start, I’d suggest starting there.

So ponder your upcoming content pieces, consider your older content you’d like to breathe some new life into and perhaps you could become a Facebook Ads Hacker.

I’d love to hear about your ideas for turning Multi-Product Ads into Multi-Content Ads in the comments section below.

We could even take the conversation offline at Mozcon!

Happy hacking.


*Yes I did say paid promotion, it’s no secret that Facebook’s organic reach continues to dwindle. The cold commercial reality is you need to pay to play on FB. The good news is that if you select ‘website clicks’ as your objective you only pay for website traffic and engagement while amplification by likes, comments, and shares are free! Those website clicks you pay for are typically substantially cheaper than Adwords, Taboola, Outbrain, Twitter or LinkedIn. How does it compare to display? It doesn’t. Paying for clicks is always preferable to paying for impressions. If you are spending money on display advertising I’d urge you to fling a few spondoolas towards Facebook ads and compare results. You will be pleasantly surprised.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Misuses of 4 Google Analytics Metrics Debunked

Posted by Tom.Capper

In this post I’ll pull apart four of the most commonly used metrics in Google Analytics, how they are collected, and why they are so easily misinterpreted.

Average Time on Page

Average time on page should be a really useful metric, particularly if you’re interested in engagement with content that’s all on a single page. Unfortunately, this is actually its worst use case. To understand why, you need to understand how time on page is calculated in Google Analytics:

Time on Page: Total across all pageviews of time from pageview to last engagement hit on that page (where an engagement hit is any of: next pageview, interactive event, e-commerce transaction, e-commerce item hit, or social plugin). (Source)

If there is no subsequent engagement hit, or if there is a gap between the last engagement hit on a site and leaving the site, the assumption is that no further time was spent on the site. Below are some scenarios with an intuitive time on page of 20 seconds, and their Google Analytics time on page:

Scenario

Intuitive time on page

GA time on page

0s: Pageview
10s: Social plugin
20s: Click through to next page

20s

20s

0s: Pageview
10s: Social plugin
20s: Leave site

20s

10s

0s: Pageview
20s: Leave site

20s

0s

Google doesn’t want exits to influence the average time on page, because of scenarios like the third example above, where they have a time on page of 0 seconds (source). To avoid this, they use the following formula (remember that Time on Page is a total):

Average Time on Page: (Time on Page) / (Pageviews – Exits)

However, as the second example above shows, this assumption doesn’t always hold. The second example feeds into the top half of the average time on page faction, but not the bottom half:

Example 2 Average Time on Page: (20s+10s+0s) / (3-2) = 30s

There are two issues here:

  1. Overestimation
    Excluding exits from the second half of the average time on page equation doesn’t have the desired effect when their time on page wasn’t 0 seconds—note that 30s is longer than any of the individual visits. This is why average time on page can often be longer than average visit duration. Nonetheless, 30 seconds doesn’t seem too far out in the above scenario (the intuitive average is 20s), but in the real world many pages have much higher exit rates than the 67% in this example, and/or much less engagement with events on page.
  2. Ignored visits
    Considering only visitors who exit without an engagement hit, whether these visitors stayed for 2 seconds, 10 minutes or anything inbetween, it doesn’t influence average time on page in the slightest. On many sites, a 10 minute view of a single page without interaction (e.g. a blog post) would be considered a success, but it wouldn’t influence this metric.

Solution: Unfortunately, there isn’t an easy solution to this issue. If you want to use average time on page, you just need to keep in mind how it’s calculated. You could also consider setting up more engagement events on page (like a scroll event without the “nonInteraction” parameter)—this solves issue #2 above, but potentially worsens issue #1.

Site Speed

If you’ve used the Site Speed reports in Google Analytics in the past, you’ve probably noticed that the numbers can sometimes be pretty difficult to believe. This is because the way that Site Speed is tracked is extremely vulnerable to outliers—it starts with a 1% sample of your users and then takes a simple average for each metric. This means that a few extreme values (for example, the occasional user with a malware-infested computer or a questionable wifi connection) can create a very large swing in your data.

The use of an average as a metric is not in itself bad, but in an area so prone to outliers and working with such a small sample, it can lead to questionable results.

Fortunately, you can increase the sampling rate right up to 100% (or the cap of 10,000 hits per day). Depending on the size of your site, this may still only be useful for top-level data. For example, if your site gets 1,000,000 hits per day and you’re interested in the performance of a new page that’s receiving 100 hits per day, Google Analytics will throttle your sampling back to the 10,000 hits per day cap—1%. As such, you’ll only be looking at a sample of 1 hit per day for that page.

Solution: Turn up the sampling rate. If you receive more than 10,000 hits per day, keep the sampling rate in mind when digging into less visited pages. You could also consider external tools and testing, such as Pingdom or WebPagetest.

Conversion Rate (by channel)

Obviously, conversion rate is not in itself a bad metric, but it can be rather misleading in certain reports if you don’t realise that, by default, conversions are attributed using a last non-direct click attribution model.

From Google Analytics Help:

“…if a person clicks over your site from google.com, then returns as “direct” traffic to convert, Google Analytics will report 1 conversion for “google.com / organic” in All Traffic.”

This means that when you’re looking at conversion numbers in your acquisition reports, it’s quite possible that every single number is different to what you’d expect under last click—every channel other than direct has a total that includes some conversions that occurred during direct sessions, and direct itself has conversion numbers that don’t include some conversions that occurred during direct sessions.

Solution: This is just something to be aware of. If you do want to know your last-click numbers, there’s always the Multi-Channel Funnels and Attribution reports to help you out.

Exit Rate

Unlike some of the other metrics I’ve discussed here, the calculation behind exit rate is very intuitive—”for all pageviews to the page, Exit Rate is the percentage that were the last in the session.” The problem with exit rate is that it’s so often used as a negative metric: “Which pages had the highest exit rate? They’re the problem with our site!” Sometimes this might be true: Perhaps, for example, if those pages are in the middle of a checkout funnel.

Often, however, a user will exit a site when they’ve found what they want. This doesn’t just mean that a high exit rate is ok on informational pages like blog posts or about pages—it could also be true of product pages and other pages with a highly conversion-focused intent. Even on ecommerce sites, not every visitor has the intention of converting. They might be researching towards a later online purchase, or even planning to visit your physical store. This is particularly true if your site ranks well for long tail queries or is referenced elsewhere. In this case, an exit could be a sign that they found the information they wanted and are ready to purchase once they have the money, the need, the right device at hand or next time they’re passing by your shop.

Solution: When judging a page by its exit rate, think about the various possible user intents. It could be useful to take a segment of visitors who exited on a certain page (in the Advanced tab of the new segment menu), and investigate their journey in User Flow reports, or their landing page and acquisition data.

Discussion

If you know of any other similarly misunderstood metrics, you have any questions or you have something to add to my analysis, tweet me at @THCapper or leave a comment below.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 2 years ago from tracking.feedpress.it

Deconstructing the App Store Rankings Formula with a Little Mad Science

Posted by AlexApptentive

After seeing Rand’s “Mad Science Experiments in SEO” presented at last year’s MozCon, I was inspired to put on the lab coat and goggles and do a few experiments of my own—not in SEO, but in SEO’s up-and-coming younger sister, ASO (app store optimization).

Working with Apptentive to guide enterprise apps and small startup apps alike to increase their discoverability in the app stores, I’ve learned a thing or two about app store optimization and what goes into an app’s ranking. It’s been my personal goal for some time now to pull back the curtains on Google and Apple. Yet, the deeper into the rabbit hole I go, the more untested assumptions I leave in my way.

Hence, I thought it was due time to put some longstanding hypotheses through the gauntlet.

As SEOs, we know how much of an impact a single ranking can mean on a SERP. One tiny rank up or down can make all the difference when it comes to your website’s traffic—and revenue.

In the world of apps, ranking is just as important when it comes to standing out in a sea of more than 1.3 million apps. Apptentive’s recent mobile consumer survey shed a little more light this claim, revealing that nearly half of all mobile app users identified browsing the app store charts and search results (the placement on either of which depends on rankings) as a preferred method for finding new apps in the app stores. Simply put, better rankings mean more downloads and easier discovery.

Like Google and Bing, the two leading app stores (the Apple App Store and Google Play) have a complex and highly guarded algorithms for determining rankings for both keyword-based app store searches and composite top charts.

Unlike SEO, however, very little research and theory has been conducted around what goes into these rankings.

Until now, that is.

Over the course of five studies analyzing various publicly available data points for a cross-section of the top 500 iOS (U.S. Apple App Store) and the top 500 Android (U.S. Google Play) apps, I’ll attempt to set the record straight with a little myth-busting around ASO. In the process, I hope to assess and quantify any perceived correlations between app store ranks, ranking volatility, and a few of the factors commonly thought of as influential to an app’s ranking.

But first, a little context

Image credit: Josh Tuininga, Apptentive

Both the Apple App Store and Google Play have roughly 1.3 million apps each, and both stores feature a similar breakdown by app category. Apps ranking in the two stores should, theoretically, be on a fairly level playing field in terms of search volume and competition.

Of these apps, nearly two-thirds have not received a single rating and 99% are considered unprofitable. These studies, therefore, single out the rare exceptions to the rule—the top 500 ranked apps in each store.

While neither Apple nor Google have revealed specifics about how they calculate search rankings, it is generally accepted that both app store algorithms factor in:

  • Average app store rating
  • Rating/review volume
  • Download and install counts
  • Uninstalls (what retention and churn look like for the app)
  • App usage statistics (how engaged an app’s users are and how frequently they launch the app)
  • Growth trends weighted toward recency (how daily download counts changed over time and how today’s ratings compare to last week’s)
  • Keyword density of the app’s landing page (Ian did a great job covering this factor in a previous Moz post)

I’ve simplified this formula to a function highlighting the four elements with sufficient data (or at least proxy data) for our analysis:

Ranking = fn(Rating, Rating Count, Installs, Trends)

Of course, right now, this generalized function doesn’t say much. Over the next five studies, however, we’ll revisit this function before ultimately attempting to compare the weights of each of these four variables on app store rankings.

(For the purpose of brevity, I’ll stop here with the assumptions, but I’ve gone into far greater depth into how I’ve reached these conclusions in a 55-page report on app store rankings.)

Now, for the Mad Science.

Study #1: App-les to app-les app store ranking volatility

The first, and most straight forward of the five studies involves tracking daily movement in app store rankings across iOS and Android versions of the same apps to determine any trends of differences between ranking volatility in the two stores.

I went with a small sample of five apps for this study, the only criteria for which were that:

  • They were all apps I actively use (a criterion for coming up with the five apps but not one that influences rank in the U.S. app stores)
  • They were ranked in the top 500 (but not the top 25, as I assumed app store rankings would be stickier at the top—an assumption I’ll test in study #2)
  • They had an almost identical version of the app in both Google Play and the App Store, meaning they should (theoretically) rank similarly
  • They covered a spectrum of app categories

The apps I ultimately chose were Lyft, Venmo, Duolingo, Chase Mobile, and LinkedIn. These five apps represent the travel, finance, education banking, and social networking categories.

Hypothesis

Going into this analysis, I predicted slightly more volatility in Apple App Store rankings, based on two statistics:

Both of these assumptions will be tested in later analysis.

Results

7-Day App Store Ranking Volatility in the App Store and Google Play

Among these five apps, Google Play rankings were, indeed, significantly less volatile than App Store rankings. Among the 35 data points recorded, rankings within Google Play moved by as much as 23 positions/ranks per day while App Store rankings moved up to 89 positions/ranks. The standard deviation of ranking volatility in the App Store was, furthermore, 4.45 times greater than that of Google Play.

Of course, the same apps varied fairly dramatically in their rankings in the two app stores, so I then standardized the ranking volatility in terms of percent change to control for the effect of numeric rank on volatility. When cast in this light, App Store rankings changed by as much as 72% within a 24-hour period while Google Play rankings changed by no more than 9%.

Also of note, daily rankings tended to move in the same direction across the two app stores approximately two-thirds of the time, suggesting that the two stores, and their customers, may have more in common than we think.

Study #2: App store ranking volatility across the top charts

Testing the assumption implicit in standardizing the data in study No. 1, this one was designed to see if app store ranking volatility is correlated with an app’s current rank. The sample for this study consisted of the top 500 ranked apps in both Google Play and the App Store, with special attention given to those on both ends of the spectrum (ranks 1–100 and 401–500).

Hypothesis

I anticipated rankings to be more volatile the higher an app is ranked—meaning an app ranked No. 450 should be able to move more ranks in any given day than an app ranked No. 50. This hypothesis is based on the assumption that higher ranked apps have more installs, active users, and ratings, and that it would take a large margin to produce a noticeable shift in any of these factors.

Results

App Store Ranking Volatility of Top 500 Apps

One look at the chart above shows that apps in both stores have increasingly more volatile rankings (based on how many ranks they moved in the last 24 hours) the lower on the list they’re ranked.

This is particularly true when comparing either end of the spectrum—with a seemingly straight volatility line among Google Play’s Top 100 apps and very few blips within the App Store’s Top 100. Compare this section to the lower end, ranks 401–)500, where both stores experience much more turbulence in their rankings. Across the gamut, I found a 24% correlation between rank and ranking volatility in the Play Store and 28% correlation in the App Store.

To put this into perspective, the average app in Google Play’s 401–)500 ranks moved 12.1 ranks in the last 24 hours while the average app in the Top 100 moved a mere 1.4 ranks. For the App Store, these numbers were 64.28 and 11.26, making slightly lower-ranked apps more than five times as volatile as the highest ranked apps. (I say slightly as these “lower-ranked” apps are still ranked higher than 99.96% of all apps.)

The relationship between rank and volatility is pretty consistent across the App Store charts, while rank has a much greater impact on volatility at the lower end of Google Play charts (ranks 1-100 have a 35% correlation) than it does at the upper end (ranks 401-500 have a 1% correlation).

Study #3: App store rankings across the stars

The next study looks at the relationship between rank and star ratings to determine any trends that set the top chart apps apart from the rest and explore any ties to app store ranking volatility.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

As discussed in the introduction, this study relates directly to one of the factors commonly accepted as influential to app store rankings: average rating.

Getting started, I hypothesized that higher ranks generally correspond to higher ratings, cementing the role of star ratings in the ranking algorithm.

As far as volatility goes, I did not anticipate average rating to play a role in app store ranking volatility, as I saw no reason for higher rated apps to be less volatile than lower rated apps, or vice versa. Instead, I believed volatility to be tied to rating volume (as we’ll explore in our last study).

Results

Average App Store Ratings of Top Apps

The chart above plots the top 100 ranked apps in either store with their average rating (both historic and current, for App Store apps). If it looks a little chaotic, it’s just one indicator of the complexity of ranking algorithm in Google Play and the App Store.

If our hypothesis was correct, we’d see a downward trend in ratings. We’d expect to see the No. 1 ranked app with a significantly higher rating than the No. 100 ranked app. Yet, in neither store is this the case. Instead, we get a seemingly random plot with no obvious trends that jump off the chart.

A closer examination, in tandem with what we already know about the app stores, reveals two other interesting points:

  1. The average star rating of the top 100 apps is significantly higher than that of the average app. Across the top charts, the average rating of a top 100 Android app was 4.319 and the average top iOS app was 3.935. These ratings are 0.32 and 0.27 points, respectively, above the average rating of all rated apps in either store. The averages across apps in the 401–)500 ranks approximately split the difference between the ratings of the top ranked apps and the ratings of the average app.
  2. The rating distribution of top apps in Google Play was considerably more compact than the distribution of top iOS apps. The standard deviation of ratings in the Apple App Store top chart was over 2.5 times greater than that of the Google Play top chart, likely meaning that ratings are more heavily weighted in Google Play’s algorithm.

App Store Ranking Volatility and Average Rating

Looking next at the relationship between ratings and app store ranking volatility reveals a -15% correlation that is consistent across both app stores; meaning the higher an app is rated, the less its rank it likely to move in a 24-hour period. The exception to this rule is the Apple App Store’s calculation of an app’s current rating, for which I did not find a statistically significant correlation.

Study #4: App store rankings across versions

This next study looks at the relationship between the age of an app’s current version, its rank and its ranking volatility.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

In alteration of the above function, I’m using the age of a current app’s version as a proxy (albeit not a very good one) for trends in app store ratings and app quality over time.

Making the assumptions that (a) apps that are updated more frequently are of higher quality and (b) each new update inspires a new wave of installs and ratings, I’m hypothesizing that the older the age of an app’s current version, the lower it will be ranked and the less volatile its rank will be.

Results

How update frequency correlates with app store rank

The first and possibly most important finding is that apps across the top charts in both Google Play and the App Store are updated remarkably often as compared to the average app.

At the time of conducting the study, the current version of the average iOS app on the top chart was only 28 days old; the current version of the average Android app was 38 days old.

As hypothesized, the age of the current version is negatively correlated with the app’s rank, with a 13% correlation in Google Play and a 10% correlation in the App Store.

How update frequency correlates with app store ranking volatility

The next part of the study maps the age of the current app version to its app store ranking volatility, finding that recently updated Android apps have less volatile rankings (correlation: 8.7%) while recently updated iOS apps have more volatile rankings (correlation: -3%).

Study #5: App store rankings across monthly active users

In the final study, I wanted to examine the role of an app’s popularity on its ranking. In an ideal world, popularity would be measured by an app’s monthly active users (MAUs), but since few mobile app developers have released this information, I’ve settled for two publicly available proxies: Rating Count and Installs.

Hypothesis

Ranking = fn(Rating, Rating Count, Installs, Trends)

For the same reasons indicated in the second study, I anticipated that more popular apps (e.g., apps with more ratings and more installs) would be higher ranked and less volatile in rank. This, again, takes into consideration that it takes more of a shift to produce a noticeable impact in average rating or any of the other commonly accepted influencers of an app’s ranking.

Results

Apps with more ratings and reviews typically rank higher

The first finding leaps straight off of the chart above: Android apps have been rated more times than iOS apps, 15.8x more, in fact.

The average app in Google Play’s Top 100 had a whopping 3.1 million ratings while the average app in the Apple App Store’s Top 100 had 196,000 ratings. In contrast, apps in the 401–)500 ranks (still tremendously successful apps in the 99.96 percentile of all apps) tended to have between one-tenth (Android) and one-fifth (iOS) of the ratings count as that of those apps in the top 100 ranks.

Considering that almost two-thirds of apps don’t have a single rating, reaching rating counts this high is a huge feat, and a very strong indicator of the influence of rating count in the app store ranking algorithms.

To even out the playing field a bit and help us visualize any correlation between ratings and rankings (and to give more credit to the still-staggering 196k ratings for the average top ranked iOS app), I’ve applied a logarithmic scale to the chart above:

The relationship between app store ratings and rankings in the top 100 apps

From this chart, we can see a correlation between ratings and rankings, such that apps with more ratings tend to rank higher. This equates to a 29% correlation in the App Store and a 40% correlation in Google Play.

Apps with more ratings typically experience less app store ranking volatility

Next up, I looked at how ratings count influenced app store ranking volatility, finding that apps with more ratings had less volatile rankings in the Apple App Store (correlation: 17%). No conclusive evidence was found within the Top 100 Google Play apps.

Apps with more installs and active users tend to rank higher in the app stores

And last but not least, I looked at install counts as an additional proxy for MAUs. (Sadly, this is a statistic only listed in Google Play. so any resulting conclusions are applicable only to Android apps.)

Among the top 100 Android apps, this last study found that installs were heavily correlated with ranks (correlation: -35.5%), meaning that apps with more installs are likely to rank higher in Google Play. Android apps with more installs also tended to have less volatile app store rankings, with a correlation of -16.5%.

Unfortunately, these numbers are slightly skewed as Google Play only provides install counts in broad ranges (e.g., 500k–)1M). For each app, I took the low end of the range, meaning we can likely expect the correlation to be a little stronger since the low end was further away from the midpoint for apps with more installs.

Summary

To make a long post ever so slightly shorter, here are the nuts and bolts unearthed in these five mad science studies in app store optimization:

  1. Across the top charts, Apple App Store rankings are 4.45x more volatile than those of Google Play
  2. Rankings become increasingly volatile the lower an app is ranked. This is particularly true across the Apple App Store’s top charts.
  3. In both stores, higher ranked apps tend to have an app store ratings count that far exceeds that of the average app.
  4. Ratings appear to matter more to the Google Play algorithm, especially as the Apple App Store top charts experience a much wider ratings distribution than that of Google Play’s top charts.
  5. The higher an app is rated, the less volatile its rankings are.
  6. The 100 highest ranked apps in either store are updated much more frequently than the average app, and apps with older current versions are correlated with lower ratings.
  7. An app’s update frequency is negatively correlated with Google Play’s ranking volatility but positively correlated with ranking volatility in the App Store. This likely due to how Apple weighs an app’s most recent ratings and reviews.
  8. The highest ranked Google Play apps receive, on average, 15.8x more ratings than the highest ranked App Store apps.
  9. In both stores, apps that fall under the 401–500 ranks receive, on average, 10–20% of the rating volume seen by apps in the top 100.
  10. Rating volume and, by extension, installs or MAUs, is perhaps the best indicator of ranks, with a 29–40% correlation between the two.

Revisiting our first (albeit oversimplified) guess at the app stores’ ranking algorithm gives us this loosely defined function:

Ranking = fn(Rating, Rating Count, Installs, Trends)

I’d now re-write the function into a formula by weighing each of these four factors, where a, b, c, & d are unknown multipliers, or weights:

Ranking = (Rating * a) + (Rating Count * b) + (Installs * c) + (Trends * d)

These five studies on ASO shed a little more light on these multipliers, showing Rating Count to have the strongest correlation with rank, followed closely by Installs, in either app store.

It’s with the other two factors—rating and trends—that the two stores show the greatest discrepancy. I’d hazard a guess to say that the App Store prioritizes growth trends over ratings, given the importance it places on an app’s current version and the wide distribution of ratings across the top charts. Google Play, on the other hand, seems to favor ratings, with an unwritten rule that apps just about have to have at least four stars to make the top 100 ranks.

Thus, we conclude our mad science with this final glimpse into what it takes to make the top charts in either store:

Weight of factors in the Apple App Store ranking algorithm

Rating Count > Installs > Trends > Rating

Weight of factors in the Google Play ranking algorithm

Rating Count > Installs > Rating > Trends


Again, we’re oversimplifying for the sake of keeping this post to a mere 3,000 words, but additional factors including keyword density and in-app engagement statistics continue to be strong indicators of ranks. They simply lie outside the scope of these studies.

I hope you found this deep-dive both helpful and interesting. Moving forward, I also hope to see ASOs conducting the same experiments that have brought SEO to the center stage, and encourage you to enhance or refute these findings with your own ASO mad science experiments.

Please share your thoughts in the comments below, and let’s deconstruct the ranking formula together, one experiment at a time.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 2 years ago from tracking.feedpress.it

Give It Up for Our MozCon 2015 Community Speakers

Posted by EricaMcGillivray

Super thrilled that we’re able to announce this year’s community speakers for MozCon, July 13-15th in Seattle!

Wow. Each year I feel that I say the pool keeps getting more and more talented, but it’s the truth! We had more quality pitches this year than in the past, and quantity-wise, there were 241, around 100 more entries than years previously. Let me tell you, many of the review committee members filled our email thread with amazement at this.

And even though we had an unprecedented six slots, the choices seemed even tougher!

241 pitches
Let that number sink in for a little while.

Because we get numerous questions about what makes a great pitch, I wanted to share both information about the speakers and their great pitches—with some details removed for spoilers. (We’re still working with each speaker to polish and finalize their topic.) I’ve also included my or Matt Roney‘s own notes on each one from when we read them without knowing who the authors were.

Please congratulate our MozCon 2015 community speakers!

Adrian Vender

Adrian is the Director of Analytics at IMI and a general enthusiast of coding and digital marketing. He’s also a life-long drummer and lover of music. Follow him at @adrianvender.

Adrian’s pitch:

Content Tracking with Google Tag Manager

While marketers have matured in the use of web analytics tools, our ability to measure how users interact with our sites’ content needs improvement. Users are interacting with dynamic content that just aren’t captured in a pageview. While there are JavaScript tricks to help track these details, working with IT to place new code is usually the major hurdle that stops us.

Finally, Google Tag Manager is that bridge to advanced content analysis. GTM may appear technical, but it can easily be used by any digital marketer to track almost any action on a site. My goal is to make ALL attendees users of GTM.

My talk will cover the following GTM concepts:

[Adrian lists 8 highly-actionable tactics he’ll cover.]

I’ll share a client example of tracking content interaction in GA. I’ll also share a link to a GTM container file that can help people pre-load the above tag templates into their own GTM.

Matt’s notes: Could be good. I know a lot of people have questions about Tag Manager, and the ubiquity of GA should help it be pretty well-received.


Chris DayleyChris Dayley

Chris is a digital marketing expert and owner of Dayley Conversion. His company provides full-service A/B testing for businesses, including design, development, and test execution. Follow him at @chrisdayley.

Chris’ pitch:

I would like to present a super actionable 15 minute presentation focused on the first two major steps businesses should take to start A/B testing:

1. Radical Redesign Testing

2. Iterative Testing (Test EVERYTHING)

I am one of the few CROs out there that recommends businesses to start with a radical redesign test. My reasoning for doing so is that most businesses have done absolutely no testing on their current website, so the current landing page/website really isn’t a “best practice” design yet.

I will show several case studies where clients saw more than a 50% lift in conversion rates just from this first step of radical redesign testing, and will offer several tips for how to create a radical redesign test. Some of the tips include:

[Chris lists three direct and interesting tips he’ll share.]

Next I suggest moving into the iterative phase.

I will show several case studies of how to move through iterative testing so you eventually test every element on your page.

Erica’s notes: Direct, interesting, and with promise of multiple case studies.


Duane BrownDuane Brown

Duane is a digital marketer with 10 years’ experience having lived and worked in five cities across three continents. He’s currently at Unbounce. When not working, you can find Duane traveling to some far-flung location around the world to eat food and soak up the culture. Follow him at @DuaneBrown.

Duane’s pitch:

What Is Delightful Remarketing & How You Can Do It Too

A lot of people find remarketing creepy and weird. They don’t get why they are seeing those ads around the internet…. let alone how to make them stop showing.

This talk will focus on the different between remarketing & creating delightful remarketing that can help grow the revenue & profit at a company and not piss customers off. 50% of US marketers don’t use remarketing according to eMarketer (2013).

– [Duane’s direct how-to for e-commerce customers.] Over 60% of customers abandon a shopping cart each year: http://baymard.com/lists/cart-abandonment-rate (3 minute)

– Cover a SaaS company using retargeting to [Duane’s actionable item]. This remarketing helps show your products sticky features while showing off your benefits (3 minute)

– The Dos: [Duane’s actionable tip], a variety of creative & a dedicated landing page creates delightful remarketing that grows revenue (3 minute)

– Wrap up and review main points. (2 minutes)

Matt’s notes: Well-detailed, an area in which there’s a lot of room for improvement.


Gianluca FiorelliGianluca Fiorelli

Moz Associate, official blogger for StateofDigital.com and known international SEO and inbound strategist, Gianluca works in the digital marketing industry, but he still believes that he just know that he knows nothing. Follow him at @gfiorelli1.

Gianluca’s pitch:

Unusual Sources for Keyword and Topical Research

A big percentage of SEOs equal Keyword and Topical Research to using Keyword Planner and Google Suggest.

However, using only them, we cannot achieve a real deep knowledge of the interests, psychology and language of our target.

In this talk, I will present unusual sources and unnoticed features of very well-known tools, and offer a final example based on a true story.

Arguments touched in the speech (not necessarily in this order):

[Gianluca lists seven how-tos and one unique case study.]

Erica’s notes: Theme of Google not giving good keyword info. Lots of unique actionable points and resources. Will work in 15 minute time limit.


Ruth Burr ReedyRuth Burr Reedy

Ruth is the head of on-site SEO for BigWing Interactive, a full-service digital marketing agency in Oklahoma City, OK. At BigWing, she manages a team doing on-site, technical, and local SEO. Ruth has been working in SEO since 2006. Follow her at @ruthburr.

Ruth’s pitch:

Get Hired to Do SEO

This talk will go way beyond “just build your own website” and talk about specific ways SEOs can build evidence of their skills across the web, including:

[Ruth lists 7 how-tos with actionable examples.]

All in a funny, actionable, beautiful, easy-to-understand get-hired masterpiece.

Erica’s notes: Great takeaways. Wanted to do a session about building your resume as a marketer for a while.


Stephanie WallaceStephanie Wallace

Stephanie is director of SEO at Nebo, a digital agency in Atlanta. She helps clients navigate the ever-changing world of SEO by understanding their audience and helping them create a digital experience that both the user and Google appreciates. Follow her at @SWallaceSEO.

Stephanie’s pitch:

Everyone knows PPC and SEO complement one another – increased visibility in search results help increase perceived authority and drive more clickthroughs to your site overall. But are you actively leveraging the wealth of PPC data available to build on your existing SEO strategy? The key to effectively using this information lies in understanding how to test SEO tactics and how to apply the results to your on-page strategies. This session will delve into actionable strategies for using PPC campaign insights to influence on-page SEO and content strategies. Key takeaways include:

[Stephanie lists four how-tos.]

Erica’s notes: Nice and actionable. Like this a lot.


As mentioned, we had 241 entries, and many of them were stage quality. Notable runners up included AJ Wilcox, Ed Reese, and Daylan Pearce, and a big pat on the back to all those who tossed their hat in.

Also, a huge thank you to my fellow selection committee members for 2015: Charlene Inoncillo, Cyrus Shepard, Danie Launders, Jen Lopez, Matt Roney, Rand Fishkin, Renea Nielsen, and Trevor Klein.

Buy your ticket now

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it

​The 3 Most Common SEO Problems on Listings Sites

Posted by Dom-Woodman

Listings sites have a very specific set of search problems that you don’t run into everywhere else. In the day I’m one of Distilled’s analysts, but by night I run a job listings site, teflSearch. So, for my first Moz Blog post I thought I’d cover the three search problems with listings sites that I spent far too long agonising about.

Quick clarification time: What is a listings site (i.e. will this post be useful for you)?

The classic listings site is Craigslist, but plenty of other sites act like listing sites:

  • Job sites like Monster
  • E-commerce sites like Amazon
  • Matching sites like Spareroom

1. Generating quality landing pages

The landing pages on listings sites are incredibly important. These pages are usually the primary drivers of converting traffic, and they’re usually generated automatically (or are occasionally custom category pages) .

For example, if I search “Jobs in Manchester“, you can see nearly every result is an automatically generated landing page or category page.

There are three common ways to generate these pages (occasionally a combination of more than one is used):

  • Faceted pages: These are generated by facets—groups of preset filters that let you filter the current search results. They usually sit on the left-hand side of the page.
  • Category pages: These pages are listings which have already had a filter applied and can’t be changed. They’re usually custom pages.
  • Free-text search pages: These pages are generated by a free-text search box.

Those definitions are still bit general; let’s clear them up with some examples:

Amazon uses a combination of categories and facets. If you click on browse by department you can see all the category pages. Then on each category page you can see a faceted search. Amazon is so large that it needs both.

Indeed generates its landing pages through free text search, for example if we search for “IT jobs in manchester” it will generate: IT jobs in manchester.

teflSearch generates landing pages using just facets. The jobs in China landing page is simply a facet of the main search page.

Each method has its own search problems when used for generating landing pages, so lets tackle them one by one.


Aside

Facets and free text search will typically generate pages with parameters e.g. a search for “dogs” would produce:

www.mysite.com?search=dogs

But to make the URL user friendly sites will often alter the URLs to display them as folders

www.mysite.com/results/dogs/

These are still just ordinary free text search and facets, the URLs are just user friendly. (They’re a lot easier to work with in robots.txt too!)


Free search (& category) problems

If you’ve decided the base of your search will be a free text search, then we’ll have two major goals:

  • Goal 1: Helping search engines find your landing pages
  • Goal 2: Giving them link equity.

Solution

Search engines won’t use search boxes and so the solution to both problems is to provide links to the valuable landing pages so search engines can find them.

There are plenty of ways to do this, but two of the most common are:

  • Category links alongside a search

    Photobucket uses a free text search to generate pages, but if we look at example search for photos of dogs, we can see the categories which define the landing pages along the right-hand side. (This is also an example of URL friendly searches!)

  • Putting the main landing pages in a top-level menu

    Indeed also uses free text to generate landing pages, and they have a browse jobs section which contains the URL structure to allow search engines to find all the valuable landing pages.

Breadcrumbs are also often used in addition to the two above and in both the examples above, you’ll find breadcrumbs that reinforce that hierarchy.

Category (& facet) problems

Categories, because they tend to be custom pages, don’t actually have many search disadvantages. Instead it’s the other attributes that make them more or less desirable. You can create them for the purposes you want and so you typically won’t have too many problems.

However, if you also use a faceted search in each category (like Amazon) to generate additional landing pages, then you’ll run into all the problems described in the next section.

At first facets seem great, an easy way to generate multiple strong relevant landing pages without doing much at all. The problems appear because people don’t put limits on facets.

Lets take the job page on teflSearch. We can see it has 18 facets each with many options. Some of these options will generate useful landing pages:

The China facet in countries will generate “Jobs in China” that’s a useful landing page.

On the other hand, the “Conditional Bonus” facet will generate “Jobs with a conditional bonus,” and that’s not so great.

We can also see that the options within a single facet aren’t always useful. As of writing, I have a single job available in Serbia. That’s not a useful search result, and the poor user engagement combined with the tiny amount of content will be a strong signal to Google that it’s thin content. Depending on the scale of your site it’s very easy to generate a mass of poor-quality landing pages.

Facets generate other problems too. The primary one being they can create a huge amount of duplicate content and pages for search engines to get lost in. This is caused by two things: The first is the sheer number of possibilities they generate, and the second is because selecting facets in different orders creates identical pages with different URLs.

We end up with four goals for our facet-generated landing pages:

  • Goal 1: Make sure our searchable landing pages are actually worth landing on, and that we’re not handing a mass of low-value pages to the search engines.
  • Goal 2: Make sure we don’t generate multiple copies of our automatically generated landing pages.
  • Goal 3: Make sure search engines don’t get caught in the metaphorical plastic six-pack rings of our facets.
  • Goal 4: Make sure our landing pages have strong internal linking.

The first goal needs to be set internally; you’re always going to be the best judge of the number of results that need to present on a page in order for it to be useful to a user. I’d argue you can rarely ever go below three, but it depends both on your business and on how much content fluctuates on your site, as the useful landing pages might also change over time.

We can solve the next three problems as group. There are several possible solutions depending on what skills and resources you have access to; here are two possible solutions:

Category/facet solution 1: Blocking the majority of facets and providing external links
  • Easiest method
  • Good if your valuable category pages rarely change and you don’t have too many of them.
  • Can be problematic if your valuable facet pages change a lot

Nofollow all your facet links, and noindex and block category pages which aren’t valuable or are deeper than x facet/folder levels into your search using robots.txt.

You set x by looking at where your useful facet pages exist that have search volume. So, for example, if you have three facets for televisions: manufacturer, size, and resolution, and even combinations of all three have multiple results and search volume, then you could set you index everything up to three levels.

On the other hand, if people are searching for three levels (e.g. “Samsung 42″ Full HD TV”) but you only have one or two results for three-level facets, then you’d be better off indexing two levels and letting the product pages themselves pick up long-tail traffic for the third level.

If you have valuable facet pages that exist deeper than 1 facet or folder into your search, then this creates some duplicate content problems dealt with in the aside “Indexing more than 1 level of facets” below.)

The immediate problem with this set-up, however, is that in one stroke we’ve removed most of the internal links to our category pages, and by no-following all the facet links, search engines won’t be able to find your valuable category pages.

In order re-create the linking, you can add a top level drop down menu to your site containing the most valuable category pages, add category links elsewhere on the page, or create a separate part of the site with links to the valuable category pages.

The top level drop down menu you can see on teflSearch (it’s the search jobs menu), the other two examples are demonstrated in Photobucket and Indeed respectively in the previous section.

The big advantage for this method is how quick it is to implement, it doesn’t require any fiddly internal logic and adding an extra menu option is usually minimal effort.

Category/facet solution 2: Creating internal logic to work with the facets

  • Requires new internal logic
  • Works for large numbers of category pages with value that can change rapidly

There are four parts to the second solution:

  1. Select valuable facet categories and allow those links to be followed. No-follow the rest.
  2. No-index all pages that return a number of items below the threshold for a useful landing page
  3. No-follow all facets on pages with a search depth greater than x.
  4. Block all facet pages deeper than x level in robots.txt

As with the last solution, x is set by looking at where your useful facet pages exist that have search volume (full explanation in the first solution), and if you’re indexing more than one level you’ll need to check out the aside below to see how to deal with the duplicate content it generates.


Aside: Indexing more than one level of facets

If you want more than one level of facets to be indexable, then this will create certain problems.

Suppose you have a facet for size:

  • Televisions: Size: 46″, 44″, 42″

And want to add a brand facet:

  • Televisions: Brand: Samsung, Panasonic, Sony

This will create duplicate content because the search engines will be able to follow your facets in both orders, generating:

  • Television – 46″ – Samsung
  • Television – Samsung – 46″

You’ll have to either rel canonical your duplicate pages with another rule or set up your facets so they create a single unique URL.

You also need to be aware that each followable facet you add will multiply with each other followable facet and it’s very easy to generate a mass of pages for search engines to get stuck in. Depending on your setup you might need to block more paths in robots.txt or set-up more logic to prevent them being followed.

Letting search engines index more than one level of facets adds a lot of possible problems; make sure you’re keeping track of them.


2. User-generated content cannibalization

This is a common problem for listings sites (assuming they allow user generated content). If you’re reading this as an e-commerce site who only lists their own products, you can skip this one.

As we covered in the first area, category pages on listings sites are usually the landing pages aiming for the valuable search terms, but as your users start generating pages they can often create titles and content that cannibalise your landing pages.

Suppose you’re a job site with a category page for PHP Jobs in Greater Manchester. If a recruiter then creates a job advert for PHP Jobs in Greater Manchester for the 4 positions they currently have, you’ve got a duplicate content problem.

This is less of a problem when your site is large and your categories mature, it will be obvious to any search engine which are your high value category pages, but at the start where you’re lacking authority and individual listings might contain more relevant content than your own search pages this can be a problem.

Solution 1: Create structured titles

Set the <title> differently than the on-page title. Depending on variables you have available to you can set the title tag programmatically without changing the page title using other information given by the user.

For example, on our imaginary job site, suppose the recruiter also provided the following information in other fields:

  • The no. of positions: 4
  • The primary area: PHP Developer
  • The name of the recruiting company: ABC Recruitment
  • Location: Manchester

We could set the <title> pattern to be: *No of positions* *The primary area* with *recruiter name* in *Location* which would give us:

4 PHP Developers with ABC Recruitment in Manchester

Setting a <title> tag allows you to target long-tail traffic by constructing detailed descriptive titles. In our above example, imagine the recruiter had specified “Castlefield, Manchester” as the location.

All of a sudden, you’ve got a perfect opportunity to pick up long-tail traffic for people searching in Castlefield in Manchester.

On the downside, you lose the ability to pick up long-tail traffic where your users have chosen keywords you wouldn’t have used.

For example, suppose Manchester has a jobs program called “Green Highway.” A job advert title containing “Green Highway” might pick up valuable long-tail traffic. Being able to discover this, however, and find a way to fit it into a dynamic title is very hard.

Solution 2: Use regex to noindex the offending pages

Perform a regex (or string contains) search on your listings titles and no-index the ones which cannabalise your main category pages.

If it’s not possible to construct titles with variables or your users provide a lot of additional long-tail traffic with their own titles, then is a great option. On the downside, you miss out on possible structured long-tail traffic that you might’ve been able to aim for.

Solution 3: De-index all your listings

It may seem rash, but if you’re a large site with a huge number of very similar or low-content listings, you might want to consider this, but there is no common standard. Some sites like Indeed choose to no-index all their job adverts, whereas some other sites like Craigslist index all their individual listings because they’ll drive long tail traffic.

Don’t de-index them all lightly!

3. Constantly expiring content

Our third and final problem is that user-generated content doesn’t last forever. Particularly on listings sites, it’s constantly expiring and changing.

For most use cases I’d recommend 301’ing expired content to a relevant category page, with a message triggered by the redirect notifying the user of why they’ve been redirected. It typically comes out as the best combination of search and UX.

For more information or advice on how to deal with the edge cases, there’s a previous Moz blog post on how to deal with expired content which I think does an excellent job of covering this area.

Summary

In summary, if you’re working with listings sites, all three of the following need to be kept in mind:

  • How are the landing pages generated? If they’re generated using free text or facets have the potential problems been solved?
  • Is user generated content cannibalising the main landing pages?
  • How has constantly expiring content been dealt with?

Good luck listing, and if you’ve had any other tricky problems or solutions you’ve come across working on listings sites lets chat about them in the comments below!

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 3 years ago from tracking.feedpress.it