Case Study: How I Turned Autocomplete Ideas into Traffic & Ranking Results with Only 5 Hours of Effort

Posted by jamiejpress

Many of us have known for a while that Google Autocomplete can be a useful tool for identifying keyword opportunities. But did you know it is also an extremely powerful tool for content ideation?

And by pushing the envelope a little further, you can turn an Autocomplete topic from a good content idea into a link-building, traffic-generating powerhouse for your website.

Here’s how I did it for one of my clients. They are in the diesel power generator industry in the Australian market, but you can use this same process for businesses in literally any industry and market you can think of.

Step 1: Find the spark of an idea using Google Autocomplete

I start by seeking out long-tail keyword ideas from Autocomplete. By typing in some of my client’s core keywords, I come across one that sparked my interest in particular—diesel generator fuel consumption.

What’s more, the Google AdWords Keyword Planner says it is a high competition term. So advertisers are prepared to spend good money on this phrase—all the better to try to rank well organically for the term. We want to get the traffic without incurring the click costs.

keyword_planner.png

Step 2: Check the competition and find an edge

Next, we find out what pages rank well for the phrase, and then identify how we can do better, with user experience top of mind.

In the case of “diesel generator fuel consumption” in Google.com.au, the top-ranking page is this one: a US-focused piece of content using gallons instead of litres.

top_ranking_page.png

This observation, paired with the fact that the #2 Autocomplete suggestion was “diesel generator fuel consumption in litres” gives me the right slant for the content that will give us the edge over the top competing page: Why not create a table using metric measurements instead of imperial measurements for our Australian audience?

So that’s what I do.

I work with the client to gather the information and create the post on the their website. Also, I insert the target phrase in the page title, meta description, URL, and once in the body content. We also create a PDF downloadable with similar content.

client_content.png

Note: While figuring out how to make product/service pages better than those of competitors is the age-old struggle when it comes to working on core SEO keywords, with longer-tail keywords like the ones you work with using this tactic, users generally want detailed information, answers to questions, or implementable tips. So it makes it a little easier to figure out how you can do it better by putting yourself in the user’s shoes.

Step 3: Find the right way to market the content

If people are searching for the term in Google, then there must also be people on forums asking about it.

A quick search through Quora, Reddit and an other forums brings up some relevant threads. I engage with the users in these forums and add non-spammy, helpful no-followed links to our new content in answering their questions.

Caveat: Forum marketing has had a bad reputation for some time, and rightly so, as SEOs have abused the tactic. Before you go linking to your content in forums, I strongly recommend you check out this resource on the right way to engage in forum marketing.

Okay, what about the results?

Since I posted the page in December 2014, referral traffic from the forums has been picking up speed; organic traffic to the page keeps building, too.

referral_traffic.png

organic_traffic.jpg

Yeah, yeah, but what about keyword rankings?

While we’re yet to hit the top-ranking post off its perch (give us time!), we are sitting at #2 and #3 in the search results as I write this. So it looks like creating that downloadable PDF paid off.

ranking.jpg

All in all, this tactic took minimal time to plan and execute—content ideation, research and creation (including the PDF version) took three hours, while link building research and implementation took an additional two hours. That’s only five hours, yet the payoff for the client is already evident, and will continue to grow in the coming months.

Why not take a crack at using this technique yourself? I would love to hear how your ideas about how you could use it to benefit your business or clients.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Big Data, Big Problems: 4 Major Link Indexes Compared

Posted by russangular

Given this blog’s readership, chances are good you will spend some time this week looking at backlinks in one of the growing number of link data tools. We know backlinks continue to be one of, if not the most important
parts of Google’s ranking algorithm. We tend to take these link data sets at face value, though, in part because they are all we have. But when your rankings are on the line, is there a better way to get at which data set is the best? How should we go
about assessing these different link indexes like
Moz,
Majestic, Ahrefs and SEMrush for quality? Historically, there have been 4 common approaches to this question of index quality…

  • Breadth: We might choose to look at the number of linking root domains any given service reports. We know
    that referring domains correlates strongly with search rankings, so it makes sense to judge a link index by how many unique domains it has
    discovered and indexed.
  • Depth: We also might choose to look at how deep the web has been crawled, looking more at the total number of URLs
    in the index, rather than the diversity of referring domains.
  • Link Overlap: A more sophisticated approach might count the number of links an index has in common with Google Webmaster
    Tools.
  • Freshness: Finally, we might choose to look at the freshness of the index. What percentage of links in the index are
    still live?

There are a number of really good studies (some newer than others) using these techniques that are worth checking out when you get a chance:

  • BuiltVisible analysis of Moz, Majestic, GWT, Ahrefs and Search Metrics
  • SEOBook comparison of Moz, Majestic, Ahrefs, and Ayima
  • MatthewWoodward
    study of Ahrefs, Majestic, Moz, Raven and SEO Spyglass
  • Marketing Signals analysis of Moz, Majestic, Ahrefs, and GWT
  • RankAbove comparison of Moz, Majestic, Ahrefs and Link Research Tools
  • StoneTemple study of Moz and Majestic

While these are all excellent at addressing the methodologies above, there is a particular limitation with all of them. They miss one of the
most important metrics we need to determine the value of a link index: proportional representation to Google’s link graph
. So here at Angular Marketing, we decided to take a closer look.

Proportional representation to Google Search Console data

So, why is it important to determine proportional representation? Many of the most important and valued metrics we use are built on proportional
models. PageRank, MozRank, CitationFlow and Ahrefs Rank are proportional in nature. The score of any one URL in the data set is relative to the
other URLs in the data set. If the data set is biased, the results are biased.

A Visualization

Link graphs are biased by their crawl prioritization. Because there is no full representation of the Internet, every link graph, even Google’s,
is a biased sample of the web. Imagine for a second that the picture below is of the web. Each dot represents a page on the Internet,
and the dots surrounded by green represent a fictitious index by Google of certain sections of the web.

Of course, Google isn’t the only organization that crawls the web. Other organizations like Moz,
Majestic, Ahrefs, and SEMrush
have their own crawl prioritizations which result in different link indexes.

In the example above, you can see different link providers trying to index the web like Google. Link data provider 1 (purple) does a good job
of building a model that is similar to Google. It isn’t very big, but it is proportional. Link data provider 2 (blue) has a much larger index,
and likely has more links in common with Google that link data provider 1, but it is highly disproportional. So, how would we go about measuring
this proportionality? And which data set is the most proportional to Google?

Methodology

The first step is to determine a measurement of relativity for analysis. Google doesn’t give us very much information about their link graph.
All we have is what is in Google Search Console. The best source we can use is referring domain counts. In particular, we want to look at
what we call
referring domain link pairs. A referring domain link pair would be something like ask.com->mlb.com: 9,444 which means
that ask.com links to mlb.com 9,444 times.

Steps

  1. Determine the root linking domain pairs and values to 100+ sites in Google Search Console
  2. Determine the same for Ahrefs, Moz, Majestic Fresh, Majestic Historic, SEMrush
  3. Compare the referring domain link pairs of each data set to Google, assuming a
    Poisson Distribution
  4. Run simulations of each data set’s performance against each other (ie: Moz vs Maj, Ahrefs vs SEMrush, Moz vs SEMrush, et al.)
  5. Analyze the results

Results

When placed head-to-head, there seem to be some clear winners at first glance. In head-to-head, Moz edges out Ahrefs, but across the board, Moz and Ahrefs fare quite evenly. Moz, Ahrefs and SEMrush seem to be far better than Majestic Fresh and Majestic Historic. Is that really the case? And why?

It turns out there is an inversely proportional relationship between index size and proportional relevancy. This might seem counterintuitive,
shouldn’t the bigger indexes be closer to Google? Not Exactly.

What does this mean?

Each organization has to create a crawl prioritization strategy. When you discover millions of links, you have to prioritize which ones you
might crawl next. Google has a crawl prioritization, so does Moz, Majestic, Ahrefs and SEMrush. There are lots of different things you might
choose to prioritize…

  • You might prioritize link discovery. If you want to build a very large index, you could prioritize crawling pages on sites that
    have historically provided new links.
  • You might prioritize content uniqueness. If you want to build a search engine, you might prioritize finding pages that are unlike
    any you have seen before. You could choose to crawl domains that historically provide unique data and little duplicate content.
  • You might prioritize content freshness. If you want to keep your search engine recent, you might prioritize crawling pages that
    change frequently.
  • You might prioritize content value, crawling the most important URLs first based on the number of inbound links to that page.

Chances are, an organization’s crawl priority will blend some of these features, but it’s difficult to design one exactly like Google. Imagine
for a moment that instead of crawling the web, you want to climb a tree. You have to come up with a tree climbing strategy.

  • You decide to climb the longest branch you see at each intersection.
  • One friend of yours decides to climb the first new branch he reaches, regardless of how long it is.
  • Your other friend decides to climb the first new branch she reaches only if she sees another branch coming off of it.

Despite having different climb strategies, everyone chooses the same first branch, and everyone chooses the same second branch. There are only
so many different options early on.

But as the climbers go further and further along, their choices eventually produce differing results. This is exactly the same for web crawlers
like Google, Moz, Majestic, Ahrefs and SEMrush. The bigger the crawl, the more the crawl prioritization will cause disparities. This is not a
deficiency; this is just the nature of the beast. However, we aren’t completely lost. Once we know how index size is related to disparity, we
can make some inferences about how similar a crawl priority may be to Google.

Unfortunately, we have to be careful in our conclusions. We only have a few data points with which to work, so it is very difficult to be
certain regarding this part of the analysis. In particular, it seems strange that Majestic would get better relative to its index size as it grows,
unless Google holds on to old data (which might be an important discovery in and of itself). It is most likely that at this point we can’t make
this level of conclusion.

So what do we do?

Let’s say you have a list of domains or URLs for which you would like to know their relative values. Your process might look something like
this…

  • Check Open Site Explorer to see if all URLs are in their index. If so, you are looking metrics most likely to be proportional to Google’s link graph.
  • If any of the links do not occur in the index, move to Ahrefs and use their Ahrefs ranking if all you need is a single PageRank-like metric.
  • If any of the links are missing from Ahrefs’s index, or you need something related to trust, move on to Majestic Fresh.
  • Finally, use Majestic Historic for (by leaps and bounds) the largest coverage available.

It is important to point out that the likelihood that all the URLs you want to check are in a single index increases as the accuracy of the metric
decreases. Considering the size of Majestic’s data, you can’t ignore them because you are less likely to get null value answers from their data than
the others. If anything rings true, it is that once again it makes sense to get data
from as many sources as possible. You won’t
get the most proportional data without Moz, the broadest data without Majestic, or everything in-between without Ahrefs.

What about SEMrush? They are making progress, but they don’t publish any relative statistics that would be useful in this particular
case. Maybe we can hope to see more from them soon given their already promising index!

Recommendations for the link graphing industry

All we hear about these days is big data; we almost never hear about good data. I know that the teams at Moz,
Majestic, Ahrefs, SEMrush and others are interested in mimicking Google, but I would love to see some organization stand up against the
allure of
more data in favor of better data—data more like Google’s. It could begin with testing various crawl strategies to see if they produce
a result more similar to that of data shared in Google Search Console. Having the most Google-like data is certainly a crown worth winning.

Credits

Thanks to Diana Carter at Angular for assistance with data acquisition and Andrew Cron with statistical analysis. Thanks also to the representatives from Moz, Majestic, Ahrefs, and SEMrush for answering questions about their indices.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Your Daily SEO Fix: Week 3

Posted by Trevor-Klein

Welcome to the third installment of our short (< 2-minute) video tutorials that help you all get the most out of Moz’s tools. Each tutorial is designed to solve a use case that we regularly hear about from Moz community members—a need or problem for which you all could use a solution.

If you missed the previous roundups, you can find ’em here:

  • Week 1: Reclaim links using Open Site Explorer, build links using Fresh Web Explorer, and find the best time to tweet using Followerwonk.
  • Week 2: Analyze SERPs using new MozBar features, boost your rankings through on-page optimization, check your anchor text using Open Site Explorer, do keyword research with OSE and the keyword difficulty tool, and discover keyword opportunities in Moz Analytics.

Today, we’ve got a brand-new roundup of the most recent videos:

  • How to Compare Link Metrics in Open Site Explorer
  • How to Find Tweet Topics with Followerwonk
  • How to Create Custom Reports in Moz Analytics
  • How to Use Spam Score to Identify High-Risk Links
  • How to Get Link Building Opportunities Delivered to Your Inbox

Hope you enjoy them!

Fix 1: How to Compare Link Metrics in Open Site Explorer

Not all links are created equal. In this Daily SEO Fix, Chiaryn shows you how to use Open Site Explorer to analyze and compare link metrics for up to five URLs to see which are strongest.

.video-container {
position: relative;
padding-bottom: 56.25%;
padding-top: 30px; height: 0; overflow: hidden;
}
.video-container iframe,
.video-container object,
.video-container embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}


Fix 2: How to Find Tweet Topics with Followerwonk

Understanding what works best for your competitors on Twitter is a great place to start when forming your own Twitter strategy. In this fix, Ellie explains how to identify strong-performing tweets from your competitors and how to use those tweets to shape your own voice and plan.


Fix 3: How to Create Custom Reports in Moz Analytics

In this Daily SEO Fix, Kevin shows you how to create a custom report in Moz Analytics and schedule it to be delivered to your inbox on a daily, weekly, or monthly basis.


Fix 4: How to Use Spam Score to Identify High-Risk Links

Almost every site has a few bad links pointing to it, but lots of highly risky links can have a negative impact on your search engine rankings. In this fix, Tori shows you how to use Moz’s Spam Score metric to identify spammy links.


Fix 5: How to Get Link Building Opportunities Delivered to Your Inbox

Building high-quality links is one of the most important aspects of SEO. In this Daily SEO Fix, Erin shows you how to use Moz Analytics to set up a weekly custom report that will notify you of pages on the web that mention your site but do not include a link, so you can use this info to build more links.


Looking for more?

We’ve got more videos in the previous two weeks’ round-ups!

Your Daily SEO Fix: Week 1

Your Daily SEO Fix: Week 2


Don’t have a Pro subscription? No problem. Everything we cover in these Daily SEO Fix videos is available with a free 30-day trial.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Misuses of 4 Google Analytics Metrics Debunked

Posted by Tom.Capper

In this post I’ll pull apart four of the most commonly used metrics in Google Analytics, how they are collected, and why they are so easily misinterpreted.

Average Time on Page

Average time on page should be a really useful metric, particularly if you’re interested in engagement with content that’s all on a single page. Unfortunately, this is actually its worst use case. To understand why, you need to understand how time on page is calculated in Google Analytics:

Time on Page: Total across all pageviews of time from pageview to last engagement hit on that page (where an engagement hit is any of: next pageview, interactive event, e-commerce transaction, e-commerce item hit, or social plugin). (Source)

If there is no subsequent engagement hit, or if there is a gap between the last engagement hit on a site and leaving the site, the assumption is that no further time was spent on the site. Below are some scenarios with an intuitive time on page of 20 seconds, and their Google Analytics time on page:

Scenario

Intuitive time on page

GA time on page

0s: Pageview
10s: Social plugin
20s: Click through to next page

20s

20s

0s: Pageview
10s: Social plugin
20s: Leave site

20s

10s

0s: Pageview
20s: Leave site

20s

0s

Google doesn’t want exits to influence the average time on page, because of scenarios like the third example above, where they have a time on page of 0 seconds (source). To avoid this, they use the following formula (remember that Time on Page is a total):

Average Time on Page: (Time on Page) / (Pageviews – Exits)

However, as the second example above shows, this assumption doesn’t always hold. The second example feeds into the top half of the average time on page faction, but not the bottom half:

Example 2 Average Time on Page: (20s+10s+0s) / (3-2) = 30s

There are two issues here:

  1. Overestimation
    Excluding exits from the second half of the average time on page equation doesn’t have the desired effect when their time on page wasn’t 0 seconds—note that 30s is longer than any of the individual visits. This is why average time on page can often be longer than average visit duration. Nonetheless, 30 seconds doesn’t seem too far out in the above scenario (the intuitive average is 20s), but in the real world many pages have much higher exit rates than the 67% in this example, and/or much less engagement with events on page.
  2. Ignored visits
    Considering only visitors who exit without an engagement hit, whether these visitors stayed for 2 seconds, 10 minutes or anything inbetween, it doesn’t influence average time on page in the slightest. On many sites, a 10 minute view of a single page without interaction (e.g. a blog post) would be considered a success, but it wouldn’t influence this metric.

Solution: Unfortunately, there isn’t an easy solution to this issue. If you want to use average time on page, you just need to keep in mind how it’s calculated. You could also consider setting up more engagement events on page (like a scroll event without the “nonInteraction” parameter)—this solves issue #2 above, but potentially worsens issue #1.

Site Speed

If you’ve used the Site Speed reports in Google Analytics in the past, you’ve probably noticed that the numbers can sometimes be pretty difficult to believe. This is because the way that Site Speed is tracked is extremely vulnerable to outliers—it starts with a 1% sample of your users and then takes a simple average for each metric. This means that a few extreme values (for example, the occasional user with a malware-infested computer or a questionable wifi connection) can create a very large swing in your data.

The use of an average as a metric is not in itself bad, but in an area so prone to outliers and working with such a small sample, it can lead to questionable results.

Fortunately, you can increase the sampling rate right up to 100% (or the cap of 10,000 hits per day). Depending on the size of your site, this may still only be useful for top-level data. For example, if your site gets 1,000,000 hits per day and you’re interested in the performance of a new page that’s receiving 100 hits per day, Google Analytics will throttle your sampling back to the 10,000 hits per day cap—1%. As such, you’ll only be looking at a sample of 1 hit per day for that page.

Solution: Turn up the sampling rate. If you receive more than 10,000 hits per day, keep the sampling rate in mind when digging into less visited pages. You could also consider external tools and testing, such as Pingdom or WebPagetest.

Conversion Rate (by channel)

Obviously, conversion rate is not in itself a bad metric, but it can be rather misleading in certain reports if you don’t realise that, by default, conversions are attributed using a last non-direct click attribution model.

From Google Analytics Help:

“…if a person clicks over your site from google.com, then returns as “direct” traffic to convert, Google Analytics will report 1 conversion for “google.com / organic” in All Traffic.”

This means that when you’re looking at conversion numbers in your acquisition reports, it’s quite possible that every single number is different to what you’d expect under last click—every channel other than direct has a total that includes some conversions that occurred during direct sessions, and direct itself has conversion numbers that don’t include some conversions that occurred during direct sessions.

Solution: This is just something to be aware of. If you do want to know your last-click numbers, there’s always the Multi-Channel Funnels and Attribution reports to help you out.

Exit Rate

Unlike some of the other metrics I’ve discussed here, the calculation behind exit rate is very intuitive—”for all pageviews to the page, Exit Rate is the percentage that were the last in the session.” The problem with exit rate is that it’s so often used as a negative metric: “Which pages had the highest exit rate? They’re the problem with our site!” Sometimes this might be true: Perhaps, for example, if those pages are in the middle of a checkout funnel.

Often, however, a user will exit a site when they’ve found what they want. This doesn’t just mean that a high exit rate is ok on informational pages like blog posts or about pages—it could also be true of product pages and other pages with a highly conversion-focused intent. Even on ecommerce sites, not every visitor has the intention of converting. They might be researching towards a later online purchase, or even planning to visit your physical store. This is particularly true if your site ranks well for long tail queries or is referenced elsewhere. In this case, an exit could be a sign that they found the information they wanted and are ready to purchase once they have the money, the need, the right device at hand or next time they’re passing by your shop.

Solution: When judging a page by its exit rate, think about the various possible user intents. It could be useful to take a segment of visitors who exited on a certain page (in the Advanced tab of the new segment menu), and investigate their journey in User Flow reports, or their landing page and acquisition data.

Discussion

If you know of any other similarly misunderstood metrics, you have any questions or you have something to add to my analysis, tweet me at @THCapper or leave a comment below.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

The Long Click and the Quality of Search Success

Posted by billslawski

“On the most basic level, Google could see how satisfied users were. To paraphrase Tolstoy, happy users were all the same. The best sign of their happiness was the “Long Click” — This occurred when someone went to a search result, ideally the top one, and did not return. That meant Google has successfully fulfilled the query.”

~ Steven Levy. In the Plex: How Google Thinks, Works, and Shapes our Lives

I often explore and read patents and papers from the search engines to try to get a sense of how they may approach different issues, and learn about the assumptions they make about search, searchers, and the Web. Lately, I’ve been keeping an eye open for papers and patents from the search engines where they talk about a metric known as the “long click.”

A recently granted Google patent uses the metric of a “Long Click” as the center of a process Google may use to track results for queries that were selected by searchers for long visits in a set of search results.

This concept isn’t new. In 2011, I wrote about a Yahoo patent in How a Search Engine May Measure the Quality of Its Search Results, where they discussed a metric that they refer to as a “target page success metric.” It included “dwell time” upon a result as a sign of search success (Yes, search engines have goals, too).

5543947f5bb408.24541747.jpg

Another Google patent described assigning web pages “reachability scores” based upon the quality of pages linked to from those initially visited pages. In the post Does Google Use Reachability Scores in Ranking Resources? I described how a Google patent that might view a long click metric as a sign to see if visitors to that page are engaged by the links to content they find those links pointing to, including links to videos. Google tells us in that patent that it might consider a “long click” to have been made on a video if someone watches at least half the video or 30 seconds of it. The patent suggests that a high reachability score on a page may mean that page could be boosted in Google search results.

554394a877e8c8.30299132.jpg

But the patent I’m writing about today is focused primarily upon looking at and tracking a search success metric like a long click or long dwell time. Here’s the abstract:

Modifying ranking data based on document changes

Invented by Henele I. Adams, and Hyung-Jin Kim

Assigned to Google

US Patent 9,002,867

Granted April 7, 2015

Filed: December 30, 2010

Abstract

Methods, systems, and apparatus, including computer programs encoded on computer storage media for determining a weighted overall quality of result statistic for a document.

One method includes receiving quality of result data for a query and a plurality of versions of a document, determining a weighted overall quality of result statistic for the document with respect to the query including weighting each version specific quality of result statistic and combining the weighted version-specific quality of result statistics, wherein each quality of result statistic is weighted by a weight determined from at least a difference between content of a reference version of the document and content of the version of the document corresponding to the version specific quality of result statistic, and storing the weighted overall quality of result statistic and data associating the query and the document with the weighted overall quality of result statistic.

This patent tells us that search results may be be ranked in an order, according to scores assigned to the search results by a scoring function or process that would be based upon things such as:

  • Where, and how often, query terms appear in the given document,
  • How common the query terms are in the documents indexed by the search engine, or
  • A query-independent measure of quality of the document itself.

Last September, I wrote about how Google might identify a category associated with a query term base upon clicks, in the post Using Query User Data To Classify Queries. In a query for “Lincoln.” the results that appear in response might be about the former US President, the town of Lincoln, Nebraska, and the model of automobile. When someone searches for [Lincoln], Google returning all three of those responses as a top result could be said to be reasonable. The patent I wrote about in that post told us that Google might collect information about “Lincoln” as a search entity, and track which category of results people clicked upon most when they performed that search, to determine what categories of pages to show other searchers. Again, that’s another “search success” based upon a past search history.

There likely is some value in working to find ways to increase the amount of dwell time someone spends upon the pages of your site, if you are already having some success in crafting page titles and snippets that persuade people to click on your pages when they those appear in search results. These approaches can include such things as:

  1. Making visiting your page a positive experience in terms of things like site speed, readability, and scannability.
  2. Making visiting your page a positive experience in terms of things like the quality of the content published on your pages including spelling, grammar, writing style, interest, quality of images, and the links you share to other resources.
  3. Providing a positive experience by offering ideas worth sharing with others, and offering opportunities for commenting and interacting with others, and by being responsive to people who do leave comments.

Here are some resources I found that discuss this long click metric in terms of “dwell time”:

Your ability to create pages that can end up in a “long click” from someone who has come to your site in response to a query, is also a “search success” metric on the search engine’s part, and you both succeed. Just be warned that as the most recent patent from Google on Long Clicks shows us, Google will be watching to make sure that the content of your page doesn’t change too much, and that people are continuing to click upon it in search results, and spend a fair amount to time upon it.

(Images for this post are from my Go Fish Digital Design Lead Devin Holmes @DevinGoFish. Thank you, Devin!)

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it