​​Measure Your Mobile Rankings and Search Visibility in Moz Analytics

Posted by jon.white

We have launched a couple of new things in Moz Pro that we are excited to share with you all: Mobile Rankings and a Search Visibility score. If you want, you can jump right in by heading to a campaign and adding a mobile engine, or keep reading for more details!

Track your mobile vs. desktop rankings in Moz Analytics

Mobilegeddon came and went with slightly less fanfare than expected, somewhat due to the vast ‘Mobile Friendly’ updates we all did at super short notice (nice work everyone!). Nevertheless, mobile rankings visibility is now firmly on everyone’s radar, and will only become more important over time.

Now you can track your campaigns’ mobile rankings for all of the same keywords and locations you are tracking on desktop.

For this campaign my mobile visibility is almost 20% lower than my desktop visibility and falling;
I can drill down to find out why

Clicking on this will take you into a new Engines tab within your Keyword Rankings page where you can find a more detailed version of this chart as well as a tabular view by keyword for both desktop and mobile. Here you can also filter by label and location.

Here I can see Search Visibility across engines including mobile;
in this case, for my branded keywords.

We have given an extra engine to all campaigns

We’ve given customers an extra engine for each campaign, increasing the number from 3 to 4. Use the extra slot to add the mobile engine and unlock your mobile data!

We will begin to track mobile rankings within 24 hours of adding to a campaign. Once you are set up, you will notice a new chart on your dashboard showing visibility for Desktop vs. Mobile Search Visibility.

Measure your Search Visibility score vs. competitors

The overall Search Visibility for my campaign

Along with this change we have also added a Search Visibility score to your rankings data. Use your visibility score to track and report on your overall campaign ranking performance, compare to your competitors, and look for any large shifts that might indicate penalties or algorithm changes. For a deeper drill-down into your data you can also segment your visibility score by keyword labels or locations. Visit the rankings summary page on any campaign to get started.

How is Search Visibility calculated?

Good question!

The Search Visibility score is the percentage of clicks we estimate you receive based on your rankings positions, across all of your keywords.

We take each ranking position for each keyword, multiply by an estimated click-thru-rate, and then take the average of all of your keywords. You can think of it as the percentage of your SERPs that you own. The score is expressed as a percentage, though scores of 100% would be almost impossible unless you are tracking keywords using the “site:” modifier. It is probably more useful to measure yourself vs. your competitors rather than focus on the actual score, but, as a rule of thumb, mid-40s is probably the realistic maximum for non-branded keywords.

Jeremy, our Moz Analytics TPM, came up with this metaphor:

Think of the SERPs for your keywords as villages. Each position on the SERP is a plot of land in SERP-village. The Search Visibility score is the average amount of plots you own in each SERP-village. Prime real estate plots (i.e., better ranking positions, like #1) are worth more. A complete monopoly of real estate in SERP-village would equate to a score of 100%. The Search Visibility score equates to how much total land you own in all SERP-villages.

Some neat ways to use this feature

  • Label and group your keywords, particularly when you add them – As visibility score is an average of all of your keywords, when you add or remove keywords from your campaign you will likely see fluctuations in the score that are unrelated to performance. Solve this by getting in the habit of labeling keywords when you add them. Then segment your data by these labels to track performance of specific keyword groups over time.
  • See how location affects your mobile rankings – Using the Engines tab in Keyword Rankings, use the filters to select just local keywords. Look for big differences between Mobile and Desktop where Google might be assuming local intent for mobile searches but not for desktop. Check out how your competitors perform for these keywords. Can you use this data?

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

The Inbound Marketing Economy

Posted by KelseyLibert

When it comes to job availability and security, the future looks bright for inbound marketers.

The Bureau of Labor Statistics (BLS) projects that employment for marketing managers will grow by 13% between 2012 and 2022. Job security for marketing managers also looks positive according to the BLS, which cites that marketing employees are less likely to be laid off since marketing drives revenue for most businesses.

While the BLS provides growth estimates for managerial-level marketing roles, these projections don’t give much insight into the growth of digital marketing, specifically the disciplines within digital marketing. As we know, “marketing” can refer to a variety of different specializations and methodologies. Since digital marketing is still relatively new compared to other fields, there is not much comprehensive research on job growth and trends in our industry.

To gain a better understanding of the current state of digital marketing careers, Fractl teamed up with Moz to identify which skills and roles are the most in demand and which states have the greatest concentration of jobs.

Methodology

We analyzed 75,315 job listings posted on Indeed.com during June 2015 based on data gathered from job ads containing the following terms:

  • “content marketing” or “content strategy”
  • “SEO” or “search engine marketing”
  • “social media marketing” or “social media management”
  • “inbound marketing” or “digital marketing”
  • “PPC” (pay-per-click)
  • “Google Analytics”

We chose the above keywords based on their likelihood to return results that were marketing-focused roles (for example, just searching for “social media” may return a lot of jobs that are not primarily marketing focused, such as customer service). The occurrence of each of these terms in job listings was quantified and segmented by state. We then combined the job listing data with U.S. Census Bureau population estimates to calculate the jobs per capita for each keyword, giving us the states with the greatest concentration of jobs for a given search query.

Using the same data, we identified which job titles appeared most frequently. We used existing data from Indeed to determine job trends and average salaries. LinkedIn search results were also used to identify keyword growth in user profiles.

Marketing skills are in high demand, but talent is hard to find

As the marketing industry continues to evolve due to emerging technology and marketing platforms, marketers are expected to pick up new skills and broaden their knowledge more quickly than ever before. Many believe this rapid rate of change has caused a marketing skills gap, making it difficult to find candidates with the technical, creative, and business proficiencies needed to succeed in digital marketing.

The ability to combine analytical thinking with creative execution is highly desirable and necessary in today’s marketing landscape. According to an article in The Guardian, “Companies will increasingly look for rounded individuals who can combine analytical rigor with the ability to apply this knowledge in a practical and creative context.” Being both detail-oriented and a big picture thinker is also a sought-after combination of attributes. A report by The Economist and Marketo found that “CMOs want people with the ability to grasp and manage the details (in data, technology, and marketing operations) combined with a view of the strategic big picture.”

But well-rounded marketers are hard to come by. In a study conducted by Bullhorn, 64% of recruiters reported a shortage of skilled candidates for available marketing roles. Wanted Analytics recently found that one of the biggest national talent shortages is for marketing manager roles, with only two available candidates per job opening.

Increase in marketers listing skills in content marketing, inbound marketing, and social media on LinkedIn profiles

While recruiter frustrations may indicate a shallow talent pool, LinkedIn tells a different story—the number of U.S.-based marketers who identify themselves as having digital marketing skills is on the rise. Using data tracked by Rand and LinkedIn, we found the following increases of marketing keywords within user profiles.

growth of marketing keywords in linkedin profiles

The number of profiles containing “content marketing” has seen the largest growth, with a 168% increase since 2013. “Social media” has also seen significant growth with a 137% increase. “Social media” appears on a significantly higher volume of profiles than the other keywords, with more than 2.2 million profiles containing some mention of social media. Although “SEO” has not seen as much growth as the other keywords, it still has the second-highest volume with it appearing in 630,717 profiles.

Why is there a growing number of people self-identifying as having the marketing skills recruiters want, yet recruiters think there is a lack of talent?

While there may be a lot of specialists out there, perhaps recruiters are struggling to fill marketing roles due to a lack of generalists or even a lack of specialists with surface-level knowledge of other areas of digital marketing (also known as a T-shaped marketer).

Popular job listings show a need for marketers to diversify their skill set

The data we gathered from LinkedIn confirm this, as the 20 most common digital marketing-related job titles being advertised call for a broad mix of skills.

20 most common marketing job titles

It’s no wonder that marketing manager roles are hard to fill, considering the job ads are looking for proficiency in a wide range of marketing disciplines including social media marketing, SEO, PPC, content marketing, Google Analytics, and digital marketing. Even job descriptions for specialist roles tend to call for skills in other disciplines. A particular role such as SEO Specialist may call for several skills other than SEO, such as PPC, content marketing, and Google Analytics.

Taking a more granular look at job titles, the chart below shows the five most common titles for each search query. One might expect mostly specialist roles to appear here, but there is a high occurrence of generalist positions, such as Digital Marketing Manager and Marketing Manager.

5 most common job titles by search query

Only one job title containing “SEO” cracked the top five. This indicates that SEO knowledge is a desirable skill within other roles, such as general digital marketing and development.

Recruiter was the third most common job title among job listings containing social media keywords, which suggests a need for social media skills in non-marketing roles.

Similar to what we saw with SEO job titles, only one job title specific to PPC (Paid Search Specialist) made it into the top job titles. PPC skills are becoming necessary for more general marketing roles, such as Marketing Manager and Digital Marketing Specialist.

Across all search queries, the most common jobs advertised call for a broad mix of skills. This tells us hiring managers are on the hunt for well-rounded candidates with a diverse range of marketing skills, as opposed to candidates with expertise in one area.

Marketers who cultivate diverse skill sets are better poised to gain an advantage over other job seekers, excel in their job role, and accelerate career growth. Jason Miller says it best in his piece about the new breed hybrid marketer:

future of marketing quote linkedin

Inbound job demand and growth: Most-wanted skills and fastest-growing jobs

Using data from Indeed, we identified which inbound skills have the highest demand and which jobs are seeing the most growth. Social media keywords claim the largest volume of results out of the terms we searched for during June 2015.

number of marketing job listings by keyword

“Social media marketing” or “social media management” appeared the most frequently in the job postings we analyzed, with 46.7% containing these keywords. “PPC” returned the smallest number of results, with only 3.8% of listings containing this term.

Perhaps this is due to social media becoming a more necessary skill across many industries and not only a necessity for marketers (for example, social media’s role in customer service and recruitment). On the other hand, job roles calling for PPC or SEO skills are most likely marketing-focused. The prevalence of social media jobs also may indicate that social media has gained wide acceptance as a necessary part of a marketing strategy. Additionally, social media skills are less valuable compared to other marketing skills, making it cheaper to hire for these positions (we will explore this further in the average salaries section below).

Our search results also included a high volume of jobs containing “digital marketing” and “SEO” keywords, which made up 19.5% and 15.5% respectively. At 5.8%, “content marketing” had the lowest search volume after “PPC.”

Digital marketing, social media, and content marketing experienced the most job growth

While the number of job listings tells us which skills are most in demand today, looking at which jobs are seeing the most growth can give insight into shifting demands.

digital marketing growth on  indeed.com

Digital marketing job listings have seen substantial growth since 2009, when it accounted for less than 0.1% of Indeed.com search results. In January 2015, this number had climbed to nearly 0.3%.

social media job growth on indeed.com

While social media marketing jobs have seen some uneven growth, as of January 2015 more than 0.1% of all job listings on Indeed.com contained the term “social media marketing” or “social media management.” This shows a significant upward trend considering this number was around 0.05% for most of 2014. It’s also worth noting that “social media” is currently ranked No. 10 on Indeed’s list of top job trends.

content marketing job growth on indeed.com

Despite its growth from 0.02% to nearly 0.09% of search volume in the last four years, “content marketing” does not make up a large volume of job postings compared to “digital marketing” or “social media.” In fact, “SEO” has seen a decrease in growth but still constitutes a higher percentage of job listings than content marketing.

SEO, PPC, and Google Analytics job growth has slowed down

On the other hand, search volume on Indeed has either decreased or plateaued for “SEO,” “PPC,” and “Google Analytics.”

seo job growth on indeed.com

As we see in the graph, the volume of “SEO job” listings peaked between 2011 and 2012. This is also around the time content marketing began gaining popularity, thanks to the Panda and Penguin updates. The decrease may be explained by companies moving their marketing budgets away from SEO and toward content or social media positions. However, “SEO” still has a significant amount of job listings, with it appearing in more than 0.2% of job listings on Indeed as of 2015.

ppc job growth on indeed.com

“PPC” has seen the most staggered growth among all the search terms we analyzed, with its peak of nearly 0.1% happening between 2012 and 2013. As of January of this year, search volume was below 0.05% for “PPC.”

google analytics job growth on indeed.com

Despite a lack of growth, the need for this skill remains steady. Between 2008 and 2009, “Google Analytics” job ads saw a huge spike on Indeed. Since then, the search volume has tapered off and plateaued through January 2015.

Most valuable skills are SEO, digital marketing, and Google Analytics

So we know the number of social media, digital marketing, and content marketing jobs are on the rise. But which skills are worth the most? We looked at the average salaries based on keywords and estimates from Indeed and salaries listed in job ads.

national average marketing salaries

Job titles containing “SEO” had an average salary of $102,000. Meanwhile, job titles containing “social media marketing” had an average salary of $51,000. Considering such a large percentage of the job listings we analyzed contained “social media” keywords, there is a much larger pool of jobs; therefore, a lot of entry level social media jobs or internships are probably bringing down the average salary.

Job titles containing “Google Analytics” had the second-highest average salary at $82,000, but this should be taken with a grain of salt considering “Google Analytics” will rarely appear as part of a job title. The chart below, which shows average salaries for jobs containing keywords anywhere in the listing as opposed to only in the title, gives a more accurate idea of how much “Google Analytics” job roles earn on average.national salary averages marketing keywords

Looking at the average salaries based on keywords that appeared anywhere within the job listing (job title, job description, etc.) shows a slightly different picture. Based on this, jobs containing “digital marketing” or “inbound marketing” had the highest average salary of $84,000. “SEO” and “Google Analytics” are tied for second with $76,000 as the average salary.

“Social media marketing” takes the bottom spot with an average salary of $57,000. However, notice that there is a higher average salary for jobs that contain “social media” within the job listing as opposed to jobs that contain “social media” within the title. This suggests that social media skills may be more valuable when combined with other responsibilities and skills, whereas a strictly social media job, such as Social Media Manager or Social Media Specialist, does not earn as much.

Massachusetts, New York, and California have the most career opportunities for inbound marketers

Looking for a new job? Maybe it’s time to pack your bags for Boston.

Massachusetts led the U.S. with the most jobs per capita for digital marketing, content marketing, SEO, and Google Analytics. New York took the top spot for social media jobs per capita, while Utah had the highest concentration of PPC jobs. California ranked in the top three for digital marketing, content marketing, social media, and Google Analytics. Illinois appeared in the top 10 for every term and usually ranked within the top five. Most of the states with the highest job concentrations are in the Northeast, West, and East Coast, with a few exceptions such as Illinois and Minnesota.

But you don’t necessarily have to move to a new state to increase the odds of landing an inbound marketing job. Some unexpected states also made the cut, with Connecticut and Vermont ranking within the top 10 for several keywords.

concentration of digital marketing jobs

marketing jobs per capita

Job listings containing “digital marketing” or “inbound marketing” were most prevalent in Massachusetts, New York, Illinois, and California, which is most likely due to these states being home to major cities where marketing agencies and large brands are headquartered or have a presence. You will notice these four states make an appearance in the top 10 for every other search query and usually rank close to the top of the list.

More surprising to find in the top 10 were smaller states such as Connecticut and Vermont. Many major organizations are headquartered in Connecticut, which may be driving the state’s need for digital marketing talent. Vermont’s high-tech industry growth may explain its high concentration of digital marketing jobs.

content marketing job concentration

per capita content marketing jobs

Although content marketing jobs are growing, there are still a low volume overall of available jobs, as shown by the low jobs per capita compared to most of the other search queries. With more than three jobs per capita, Massachusetts and New York topped the list for the highest concentration of job listings containing “content marketing” or “content strategy.” California and Illinois rank in third and fourth with 2.8 and 2.1 jobs per capita respectively.

seo job concentration

seo jobs per capita

Again, Massachusetts and New York took the top spots, each with more than eight SEO jobs per capita. Utah took third place for the highest concentration of SEO jobs. Surprised to see Utah rank in the top 10? Its inclusion on this list and others may be due to its booming tech startup scene, which has earned the metropolitan areas of Salt Lake City, Provo, and Park City the nickname Silicon Slopes.

social media job concentration

social media jobs per capita

Compared to the other keywords, “social media” sees a much higher concentration of jobs. New York dominates the rankings with nearly 24 social media jobs per capita. The other top contenders of California, Massachusetts, and Illinois all have more than 15 social media jobs per capita.

The numbers at the bottom of this list can give you an idea of how prevalent social media jobs were compared to any other keyword we analyzed. Minnesota’s 12.1 jobs per capita, the lowest ranking state in the top 10 for social media, trumps even the highest ranking state for any other keyword (11.5 digital marketing jobs per capita in Massachusetts).

ppc job concentration

ppc jobs per capita

Due to its low overall number of available jobs, “PPC” sees the lowest jobs per capita out of all the search queries. Utah has the highest concentration of jobs with just two PPC jobs per 100,000 residents. It is also the only state in the top 10 to crack two jobs per capita.

google analytics job concentration

google analytics jobs per capita

Regionally, the Northeast and West dominate the rankings, with the exception of Illinois. Massachusetts and New York are tied for the most Google Analytics job postings, each with nearly five jobs per capita. At more than three jobs per 100,000 residents, California, Illinois, and Colorado round out the top five.

Overall, our findings indicate that none of the marketing disciplines we analyzed are dying career choices, but there is a need to become more than a one-trick pony—or else you’ll risk getting passed up for job opportunities. As the marketing industry evolves, there is a greater need for marketers who “wear many hats” and have competencies across different marketing disciplines. Marketers who develop diverse skill sets can gain a competitive advantage in the job market and achieve greater career growth.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

UX, Content Quality, and SEO – Whiteboard Friday

Posted by EricEnge

Editor’s note: Today we’re featuring back-to-back episodes of Whiteboard Friday from our friends at Stone Temple Consulting. Make sure to also check out the first episode, “Becoming Better SEO Scientists” from Mark Traphagen.

User experience and the quality of your content have an incredibly broad impact on your SEO efforts. In this episode of Whiteboard Friday, Stone Temple’s Eric Enge shows you how paying attention to your users can benefit your position in the SERPs.

For reference, here’s a still of this week’s whiteboard.
Click on it to open a high resolution image in a new tab!

Video transcription

Hi, Mozzers. I’m Eric Enge, CEO of Stone Temple Consulting. Today I want to talk to you about one of the most underappreciated aspects of SEO, and that is the interaction between user experience, content quality, and your SEO rankings and traffic.

I’m going to take you through a little history first. You know, we all know about the Panda algorithm update that came out in February 23, 2011, and of course more recently we have the search quality update that came out in May 19, 2015. Our Panda friend had 27 different updates that we know of along the way. So a lot of stuff has gone on, but we need to realize that that is not where it all started.

The link algorithm from the very beginning was about search quality. Links allowed Google to have an algorithm that gave better results than the other search engines of their day, which were dependent on keywords. These things however, that I’ve just talked about, are still just the tip of the iceberg. Google goes a lot deeper than that, and I want to walk you through the different things that it does.

So consider for a moment, you have someone search on the phrase “men’s shoes” and they come to your website.

What is that they want when they come to your website? Do they want sneakers, sandals, dress shoes? Well, those are sort of the obvious things that they might want. But you need to think a little bit more about what the user really wants to be able to know before they buy from you.

First of all, there has to be a way to buy. By the way, affiliate sites don’t have ways to buy. So the line of thinking I’m talking about might not work out so well for affiliate sites and works better for people who can actually sell the product directly. But in addition to a way to buy, they might want a privacy policy. They might want to see an About Us page. They might want to be able to see your phone number. These are all different kinds of things that users look for when they arrive on the pages of your site.

So as we think about this, what is it that we can do to do a better job with our websites? Well, first of all, lose the focus on keywords. Don’t get me wrong, keywords haven’t gone entirely away. But the pages where we overemphasize one particular keyword over another or related phrases are long gone, and you need to have a broader focus on how you approach things.

User experience is now a big deal. You really need to think about how users are interacting with your page and how that shows your overall page quality. Think about the percent satisfaction. If I send a hundred users to your page from my search engine, how many of those users are going to be happy with the content or the products or everything that they see with your page? You need to think through the big picture. So at the end of the day, this impacts the content on your page to be sure, but a lot more than that it impacts the design, related items that you have on the page.

So let me just give you an example of that. I looked at one page recently that was for a flower site. It was a page about annuals on that site, and that page had no link to their perennials page. Well, okay, a fairly good percentage of people who arrive on a page about annuals are also going to want to have perennials as something they might consider buying. So that page was probably coming across as a poor user experience. So these related items concepts are incredibly important.

Then the links to your page is actually a way to get to some of those related items, and so those are really important as well. What are the related products that you link to?

Finally, really it impacts everything you do with your page design. You need to move past the old-fashioned way of thinking about SEO and into the era of: How am I doing with satisfying all the people who come to the pages of your site?

Thank you, Mozzers. Have a great day.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Big Data, Big Problems: 4 Major Link Indexes Compared

Posted by russangular

Given this blog’s readership, chances are good you will spend some time this week looking at backlinks in one of the growing number of link data tools. We know backlinks continue to be one of, if not the most important
parts of Google’s ranking algorithm. We tend to take these link data sets at face value, though, in part because they are all we have. But when your rankings are on the line, is there a better way to get at which data set is the best? How should we go
about assessing these different link indexes like
Moz,
Majestic, Ahrefs and SEMrush for quality? Historically, there have been 4 common approaches to this question of index quality…

  • Breadth: We might choose to look at the number of linking root domains any given service reports. We know
    that referring domains correlates strongly with search rankings, so it makes sense to judge a link index by how many unique domains it has
    discovered and indexed.
  • Depth: We also might choose to look at how deep the web has been crawled, looking more at the total number of URLs
    in the index, rather than the diversity of referring domains.
  • Link Overlap: A more sophisticated approach might count the number of links an index has in common with Google Webmaster
    Tools.
  • Freshness: Finally, we might choose to look at the freshness of the index. What percentage of links in the index are
    still live?

There are a number of really good studies (some newer than others) using these techniques that are worth checking out when you get a chance:

  • BuiltVisible analysis of Moz, Majestic, GWT, Ahrefs and Search Metrics
  • SEOBook comparison of Moz, Majestic, Ahrefs, and Ayima
  • MatthewWoodward
    study of Ahrefs, Majestic, Moz, Raven and SEO Spyglass
  • Marketing Signals analysis of Moz, Majestic, Ahrefs, and GWT
  • RankAbove comparison of Moz, Majestic, Ahrefs and Link Research Tools
  • StoneTemple study of Moz and Majestic

While these are all excellent at addressing the methodologies above, there is a particular limitation with all of them. They miss one of the
most important metrics we need to determine the value of a link index: proportional representation to Google’s link graph
. So here at Angular Marketing, we decided to take a closer look.

Proportional representation to Google Search Console data

So, why is it important to determine proportional representation? Many of the most important and valued metrics we use are built on proportional
models. PageRank, MozRank, CitationFlow and Ahrefs Rank are proportional in nature. The score of any one URL in the data set is relative to the
other URLs in the data set. If the data set is biased, the results are biased.

A Visualization

Link graphs are biased by their crawl prioritization. Because there is no full representation of the Internet, every link graph, even Google’s,
is a biased sample of the web. Imagine for a second that the picture below is of the web. Each dot represents a page on the Internet,
and the dots surrounded by green represent a fictitious index by Google of certain sections of the web.

Of course, Google isn’t the only organization that crawls the web. Other organizations like Moz,
Majestic, Ahrefs, and SEMrush
have their own crawl prioritizations which result in different link indexes.

In the example above, you can see different link providers trying to index the web like Google. Link data provider 1 (purple) does a good job
of building a model that is similar to Google. It isn’t very big, but it is proportional. Link data provider 2 (blue) has a much larger index,
and likely has more links in common with Google that link data provider 1, but it is highly disproportional. So, how would we go about measuring
this proportionality? And which data set is the most proportional to Google?

Methodology

The first step is to determine a measurement of relativity for analysis. Google doesn’t give us very much information about their link graph.
All we have is what is in Google Search Console. The best source we can use is referring domain counts. In particular, we want to look at
what we call
referring domain link pairs. A referring domain link pair would be something like ask.com->mlb.com: 9,444 which means
that ask.com links to mlb.com 9,444 times.

Steps

  1. Determine the root linking domain pairs and values to 100+ sites in Google Search Console
  2. Determine the same for Ahrefs, Moz, Majestic Fresh, Majestic Historic, SEMrush
  3. Compare the referring domain link pairs of each data set to Google, assuming a
    Poisson Distribution
  4. Run simulations of each data set’s performance against each other (ie: Moz vs Maj, Ahrefs vs SEMrush, Moz vs SEMrush, et al.)
  5. Analyze the results

Results

When placed head-to-head, there seem to be some clear winners at first glance. In head-to-head, Moz edges out Ahrefs, but across the board, Moz and Ahrefs fare quite evenly. Moz, Ahrefs and SEMrush seem to be far better than Majestic Fresh and Majestic Historic. Is that really the case? And why?

It turns out there is an inversely proportional relationship between index size and proportional relevancy. This might seem counterintuitive,
shouldn’t the bigger indexes be closer to Google? Not Exactly.

What does this mean?

Each organization has to create a crawl prioritization strategy. When you discover millions of links, you have to prioritize which ones you
might crawl next. Google has a crawl prioritization, so does Moz, Majestic, Ahrefs and SEMrush. There are lots of different things you might
choose to prioritize…

  • You might prioritize link discovery. If you want to build a very large index, you could prioritize crawling pages on sites that
    have historically provided new links.
  • You might prioritize content uniqueness. If you want to build a search engine, you might prioritize finding pages that are unlike
    any you have seen before. You could choose to crawl domains that historically provide unique data and little duplicate content.
  • You might prioritize content freshness. If you want to keep your search engine recent, you might prioritize crawling pages that
    change frequently.
  • You might prioritize content value, crawling the most important URLs first based on the number of inbound links to that page.

Chances are, an organization’s crawl priority will blend some of these features, but it’s difficult to design one exactly like Google. Imagine
for a moment that instead of crawling the web, you want to climb a tree. You have to come up with a tree climbing strategy.

  • You decide to climb the longest branch you see at each intersection.
  • One friend of yours decides to climb the first new branch he reaches, regardless of how long it is.
  • Your other friend decides to climb the first new branch she reaches only if she sees another branch coming off of it.

Despite having different climb strategies, everyone chooses the same first branch, and everyone chooses the same second branch. There are only
so many different options early on.

But as the climbers go further and further along, their choices eventually produce differing results. This is exactly the same for web crawlers
like Google, Moz, Majestic, Ahrefs and SEMrush. The bigger the crawl, the more the crawl prioritization will cause disparities. This is not a
deficiency; this is just the nature of the beast. However, we aren’t completely lost. Once we know how index size is related to disparity, we
can make some inferences about how similar a crawl priority may be to Google.

Unfortunately, we have to be careful in our conclusions. We only have a few data points with which to work, so it is very difficult to be
certain regarding this part of the analysis. In particular, it seems strange that Majestic would get better relative to its index size as it grows,
unless Google holds on to old data (which might be an important discovery in and of itself). It is most likely that at this point we can’t make
this level of conclusion.

So what do we do?

Let’s say you have a list of domains or URLs for which you would like to know their relative values. Your process might look something like
this…

  • Check Open Site Explorer to see if all URLs are in their index. If so, you are looking metrics most likely to be proportional to Google’s link graph.
  • If any of the links do not occur in the index, move to Ahrefs and use their Ahrefs ranking if all you need is a single PageRank-like metric.
  • If any of the links are missing from Ahrefs’s index, or you need something related to trust, move on to Majestic Fresh.
  • Finally, use Majestic Historic for (by leaps and bounds) the largest coverage available.

It is important to point out that the likelihood that all the URLs you want to check are in a single index increases as the accuracy of the metric
decreases. Considering the size of Majestic’s data, you can’t ignore them because you are less likely to get null value answers from their data than
the others. If anything rings true, it is that once again it makes sense to get data
from as many sources as possible. You won’t
get the most proportional data without Moz, the broadest data without Majestic, or everything in-between without Ahrefs.

What about SEMrush? They are making progress, but they don’t publish any relative statistics that would be useful in this particular
case. Maybe we can hope to see more from them soon given their already promising index!

Recommendations for the link graphing industry

All we hear about these days is big data; we almost never hear about good data. I know that the teams at Moz,
Majestic, Ahrefs, SEMrush and others are interested in mimicking Google, but I would love to see some organization stand up against the
allure of
more data in favor of better data—data more like Google’s. It could begin with testing various crawl strategies to see if they produce
a result more similar to that of data shared in Google Search Console. Having the most Google-like data is certainly a crown worth winning.

Credits

Thanks to Diana Carter at Angular for assistance with data acquisition and Andrew Cron with statistical analysis. Thanks also to the representatives from Moz, Majestic, Ahrefs, and SEMrush for answering questions about their indices.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Misuses of 4 Google Analytics Metrics Debunked

Posted by Tom.Capper

In this post I’ll pull apart four of the most commonly used metrics in Google Analytics, how they are collected, and why they are so easily misinterpreted.

Average Time on Page

Average time on page should be a really useful metric, particularly if you’re interested in engagement with content that’s all on a single page. Unfortunately, this is actually its worst use case. To understand why, you need to understand how time on page is calculated in Google Analytics:

Time on Page: Total across all pageviews of time from pageview to last engagement hit on that page (where an engagement hit is any of: next pageview, interactive event, e-commerce transaction, e-commerce item hit, or social plugin). (Source)

If there is no subsequent engagement hit, or if there is a gap between the last engagement hit on a site and leaving the site, the assumption is that no further time was spent on the site. Below are some scenarios with an intuitive time on page of 20 seconds, and their Google Analytics time on page:

Scenario

Intuitive time on page

GA time on page

0s: Pageview
10s: Social plugin
20s: Click through to next page

20s

20s

0s: Pageview
10s: Social plugin
20s: Leave site

20s

10s

0s: Pageview
20s: Leave site

20s

0s

Google doesn’t want exits to influence the average time on page, because of scenarios like the third example above, where they have a time on page of 0 seconds (source). To avoid this, they use the following formula (remember that Time on Page is a total):

Average Time on Page: (Time on Page) / (Pageviews – Exits)

However, as the second example above shows, this assumption doesn’t always hold. The second example feeds into the top half of the average time on page faction, but not the bottom half:

Example 2 Average Time on Page: (20s+10s+0s) / (3-2) = 30s

There are two issues here:

  1. Overestimation
    Excluding exits from the second half of the average time on page equation doesn’t have the desired effect when their time on page wasn’t 0 seconds—note that 30s is longer than any of the individual visits. This is why average time on page can often be longer than average visit duration. Nonetheless, 30 seconds doesn’t seem too far out in the above scenario (the intuitive average is 20s), but in the real world many pages have much higher exit rates than the 67% in this example, and/or much less engagement with events on page.
  2. Ignored visits
    Considering only visitors who exit without an engagement hit, whether these visitors stayed for 2 seconds, 10 minutes or anything inbetween, it doesn’t influence average time on page in the slightest. On many sites, a 10 minute view of a single page without interaction (e.g. a blog post) would be considered a success, but it wouldn’t influence this metric.

Solution: Unfortunately, there isn’t an easy solution to this issue. If you want to use average time on page, you just need to keep in mind how it’s calculated. You could also consider setting up more engagement events on page (like a scroll event without the “nonInteraction” parameter)—this solves issue #2 above, but potentially worsens issue #1.

Site Speed

If you’ve used the Site Speed reports in Google Analytics in the past, you’ve probably noticed that the numbers can sometimes be pretty difficult to believe. This is because the way that Site Speed is tracked is extremely vulnerable to outliers—it starts with a 1% sample of your users and then takes a simple average for each metric. This means that a few extreme values (for example, the occasional user with a malware-infested computer or a questionable wifi connection) can create a very large swing in your data.

The use of an average as a metric is not in itself bad, but in an area so prone to outliers and working with such a small sample, it can lead to questionable results.

Fortunately, you can increase the sampling rate right up to 100% (or the cap of 10,000 hits per day). Depending on the size of your site, this may still only be useful for top-level data. For example, if your site gets 1,000,000 hits per day and you’re interested in the performance of a new page that’s receiving 100 hits per day, Google Analytics will throttle your sampling back to the 10,000 hits per day cap—1%. As such, you’ll only be looking at a sample of 1 hit per day for that page.

Solution: Turn up the sampling rate. If you receive more than 10,000 hits per day, keep the sampling rate in mind when digging into less visited pages. You could also consider external tools and testing, such as Pingdom or WebPagetest.

Conversion Rate (by channel)

Obviously, conversion rate is not in itself a bad metric, but it can be rather misleading in certain reports if you don’t realise that, by default, conversions are attributed using a last non-direct click attribution model.

From Google Analytics Help:

“…if a person clicks over your site from google.com, then returns as “direct” traffic to convert, Google Analytics will report 1 conversion for “google.com / organic” in All Traffic.”

This means that when you’re looking at conversion numbers in your acquisition reports, it’s quite possible that every single number is different to what you’d expect under last click—every channel other than direct has a total that includes some conversions that occurred during direct sessions, and direct itself has conversion numbers that don’t include some conversions that occurred during direct sessions.

Solution: This is just something to be aware of. If you do want to know your last-click numbers, there’s always the Multi-Channel Funnels and Attribution reports to help you out.

Exit Rate

Unlike some of the other metrics I’ve discussed here, the calculation behind exit rate is very intuitive—”for all pageviews to the page, Exit Rate is the percentage that were the last in the session.” The problem with exit rate is that it’s so often used as a negative metric: “Which pages had the highest exit rate? They’re the problem with our site!” Sometimes this might be true: Perhaps, for example, if those pages are in the middle of a checkout funnel.

Often, however, a user will exit a site when they’ve found what they want. This doesn’t just mean that a high exit rate is ok on informational pages like blog posts or about pages—it could also be true of product pages and other pages with a highly conversion-focused intent. Even on ecommerce sites, not every visitor has the intention of converting. They might be researching towards a later online purchase, or even planning to visit your physical store. This is particularly true if your site ranks well for long tail queries or is referenced elsewhere. In this case, an exit could be a sign that they found the information they wanted and are ready to purchase once they have the money, the need, the right device at hand or next time they’re passing by your shop.

Solution: When judging a page by its exit rate, think about the various possible user intents. It could be useful to take a segment of visitors who exited on a certain page (in the Advanced tab of the new segment menu), and investigate their journey in User Flow reports, or their landing page and acquisition data.

Discussion

If you know of any other similarly misunderstood metrics, you have any questions or you have something to add to my analysis, tweet me at @THCapper or leave a comment below.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it