Why We Can’t Do Keyword Research Like It’s 2010 – Whiteboard Friday

Posted by randfish

Keyword Research is a very different field than it was just five years ago, and if we don’t keep up with the times we might end up doing more harm than good. From the research itself to the selection and targeting process, in today’s Whiteboard Friday Rand explains what has changed and what we all need to do to conduct effective keyword research today.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

What do we need to change to keep up with the changing world of keyword research?

Howdy, Moz fans, and welcome to another edition of Whiteboard Friday. This week we’re going to chat a little bit about keyword research, why it’s changed from the last five, six years and what we need to do differently now that things have changed. So I want to talk about changing up not just the research but also the selection and targeting process.

There are three big areas that I’ll cover here. There’s lots more in-depth stuff, but I think we should start with these three.

1) The Adwords keyword tool hides data!

This is where almost all of us in the SEO world start and oftentimes end with our keyword research. We go to AdWords Keyword Tool, what used to be the external keyword tool and now is inside AdWords Ad Planner. We go inside that tool, and we look at the volume that’s reported and we sort of record that as, well, it’s not good, but it’s the best we’re going to do.

However, I think there are a few things to consider here. First off, that tool is hiding data. What I mean by that is not that they’re not telling the truth, but they’re not telling the whole truth. They’re not telling nothing but the truth, because those rounded off numbers that you always see, you know that those are inaccurate. Anytime you’ve bought keywords, you’ve seen that the impression count never matches the count that you see in the AdWords tool. It’s not usually massively off, but it’s often off by a good degree, and the only thing it’s great for is telling relative volume from one from another.

But because AdWords hides data essentially by saying like, “Hey, you’re going to type in . . .” Let’s say I’m going to type in “college tuition,” and Google knows that a lot of people search for how to reduce college tuition, but that doesn’t come up in the suggestions because it’s not a commercial term, or they don’t think that an advertiser who bids on that is going to do particularly well and so they don’t show it in there. I’m giving an example. They might indeed show that one.

But because that data is hidden, we need to go deeper. We need to go beyond and look at things like Google Suggest and related searches, which are down at the bottom. We need to start conducting customer interviews and staff interviews, which hopefully has always been part of your brainstorming process but really needs to be now. Then you can apply that to AdWords. You can apply that to suggest and related.

The beautiful thing is once you get these tools from places like visiting forums or communities, discussion boards and seeing what terms and phrases people are using, you can collect all this stuff up, plug it back into AdWords, and now they will tell you how much volume they’ve got. So you take that how to lower college tuition term, you plug it into AdWords, they will show you a number, a non-zero number. They were just hiding it in the suggestions because they thought, “Hey, you probably don’t want to bid on that. That won’t bring you a good ROI.” So you’ve got to be careful with that, especially when it comes to SEO kinds of keyword research.

2) Building separate pages for each term or phrase doesn’t make sense

It used to be the case that we built separate pages for every single term and phrase that was in there, because we wanted to have the maximum keyword targeting that we could. So it didn’t matter to us that college scholarship and university scholarships were essentially people looking for exactly the same thing, just using different terminology. We would make one page for one and one page for the other. That’s not the case anymore.

Today, we need to group by the same searcher intent. If two searchers are searching for two different terms or phrases but both of them have exactly the same intent, they want the same information, they’re looking for the same answers, their query is going to be resolved by the same content, we want one page to serve those, and that’s changed up a little bit of how we’ve done keyword research and how we do selection and targeting as well.

3) Build your keyword consideration and prioritization spreadsheet with the right metrics

Everybody’s got an Excel version of this, because I think there’s just no awesome tool out there that everyone loves yet that kind of solves this problem for us, and Excel is very, very flexible. So we go into Excel, we put in our keyword, the volume, and then a lot of times we almost stop there. We did keyword volume and then like value to the business and then we prioritize.

What are all these new columns you’re showing me, Rand? Well, here I think is how sophisticated, modern SEOs that I’m seeing in the more advanced agencies, the more advanced in-house practitioners, this is what I’m seeing them add to the keyword process.

Difficulty

A lot of folks have done this, but difficulty helps us say, “Hey, this has a lot of volume, but it’s going to be tremendously hard to rank.”

The difficulty score that Moz uses and attempts to calculate is a weighted average of the top 10 domain authorities. It also uses page authority, so it’s kind of a weighted stack out of the two. If you’re seeing very, very challenging pages, very challenging domains to get in there, it’s going to be super hard to rank against them. The difficulty is high. For all of these ones it’s going to be high because college and university terms are just incredibly lucrative.

That difficulty can help bias you against chasing after terms and phrases for which you are very unlikely to rank for at least early on. If you feel like, “Hey, I already have a powerful domain. I can rank for everything I want. I am the thousand pound gorilla in my space,” great. Go after the difficulty of your choice, but this helps prioritize.

Opportunity

This is actually very rarely used, but I think sophisticated marketers are using it extremely intelligently. Essentially what they’re saying is, “Hey, if you look at a set of search results, sometimes there are two or three ads at the top instead of just the ones on the sidebar, and that’s biasing some of the click-through rate curve.” Sometimes there’s an instant answer or a Knowledge Graph or a news box or images or video, or all these kinds of things that search results can be marked up with, that are not just the classic 10 web results. Unfortunately, if you’re building a spreadsheet like this and treating every single search result like it’s just 10 blue links, well you’re going to lose out. You’re missing the potential opportunity and the opportunity cost that comes with ads at the top or all of these kinds of features that will bias the click-through rate curve.

So what I’ve seen some really smart marketers do is essentially build some kind of a framework to say, “Hey, you know what? When we see that there’s a top ad and an instant answer, we’re saying the opportunity if I was ranking number 1 is not 10 out of 10. I don’t expect to get whatever the average traffic for the number 1 position is. I expect to get something considerably less than that. Maybe something around 60% of that, because of this instant answer and these top ads.” So I’m going to mark this opportunity as a 6 out of 10.

There are 2 top ads here, so I’m giving this a 7 out of 10. This has two top ads and then it has a news block below the first position. So again, I’m going to reduce that click-through rate. I think that’s going down to a 6 out of 10.

You can get more and less scientific and specific with this. Click-through rate curves are imperfect by nature because we truly can’t measure exactly how those things change. However, I think smart marketers can make some good assumptions from general click-through rate data, which there are several resources out there on that to build a model like this and then include it in their keyword research.

This does mean that you have to run a query for every keyword you’re thinking about, but you should be doing that anyway. You want to get a good look at who’s ranking in those search results and what kind of content they’re building . If you’re running a keyword difficulty tool, you are already getting something like that.

Business value

This is a classic one. Business value is essentially saying, “What’s it worth to us if visitors come through with this search term?” You can get that from bidding through AdWords. That’s the most sort of scientific, mathematically sound way to get it. Then, of course, you can also get it through your own intuition. It’s better to start with your intuition than nothing if you don’t already have AdWords data or you haven’t started bidding, and then you can refine your sort of estimate over time as you see search visitors visit the pages that are ranking, as you potentially buy those ads, and those kinds of things.

You can get more sophisticated around this. I think a 10 point scale is just fine. You could also use a one, two, or three there, that’s also fine.

Requirements or Options

Then I don’t exactly know what to call this column. I can’t remember the person who’ve showed me theirs that had it in there. I think they called it Optional Data or Additional SERPs Data, but I’m going to call it Requirements or Options. Requirements because this is essentially saying, “Hey, if I want to rank in these search results, am I seeing that the top two or three are all video? Oh, they’re all video. They’re all coming from YouTube. If I want to be in there, I’ve got to be video.”

Or something like, “Hey, I’m seeing that most of the top results have been produced or updated in the last six months. Google appears to be biasing to very fresh information here.” So, for example, if I were searching for “university scholarships Cambridge 2015,” well, guess what? Google probably wants to bias to show results that have been either from the official page on Cambridge’s website or articles from this year about getting into that university and the scholarships that are available or offered. I saw those in two of these search results, both the college and university scholarships had a significant number of the SERPs where a fresh bump appeared to be required. You can see that a lot because the date will be shown ahead of the description, and the date will be very fresh, sometime in the last six months or a year.

Prioritization

Then finally I can build my prioritization. So based on all the data I had here, I essentially said, “Hey, you know what? These are not 1 and 2. This is actually 1A and 1B, because these are the same concepts. I’m going to build a single page to target both of those keyword phrases.” I think that makes good sense. Someone who is looking for college scholarships, university scholarships, same intent.

I am giving it a slight prioritization, 1A versus 1B, and the reason I do this is because I always have one keyword phrase that I’m leaning on a little more heavily. Because Google isn’t perfect around this, the search results will be a little different. I want to bias to one versus the other. In this case, my title tag, since I more targeting university over college, I might say something like college and university scholarships so that university and scholarships are nicely together, near the front of the title, that kind of thing. Then 1B, 2, 3.

This is kind of the way that modern SEOs are building a more sophisticated process with better data, more inclusive data that helps them select the right kinds of keywords and prioritize to the right ones. I’m sure you guys have built some awesome stuff. The Moz community is filled with very advanced marketers, probably plenty of you who’ve done even more than this.

I look forward to hearing from you in the comments. I would love to chat more about this topic, and we’ll see you again next week for another edition of Whiteboard Friday. Take care.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

[ccw-atrib-link]

5 Spreadsheet Tips for Manual Link Audits

Posted by MarieHaynes

Link auditing is the part of my job that I love the most. I have audited a LOT of links over the last few years. While there are some programs out there that can be quite helpful to the avid link auditor, I still prefer to create a spreadsheet of my links in Excel and then to audit those links one-by-one from within Google Spreadsheets. Over the years I have learned a few tricks and formulas that have helped me in this process. In this article, I will share several of these with you.

Please know that while I am quite comfortable being labelled a link auditing expert, I am not an Excel wizard. I am betting that some of the things that I am doing could be improved upon if you’re an advanced user. As such, if you have any suggestions or tips of your own I’d love to hear them in the comments section!

1. Extract the domain or subdomain from a URL

OK. You’ve downloaded links from as many sources as possible and now you want to manually visit and evaluate one link from every domain. But, holy moly, some of these domains can have THOUSANDS of links pointing to the site. So, let’s break these down so that you are just seeing one link from each domain. The first step is to extract the domain or subdomain from each url.

I am going to show you examples from a Google spreadsheet as I find that these display nicer for demonstration purposes. However, if you’ve got a fairly large site, you’ll find that the spreadsheets are easier to create in Excel. If you’re confused about any of these steps, check out the animated gif at the end of each step to see the process in action.

Here is how you extract a domain or subdomain from a url:

  • Create a new column to the left of your url column.
  • Use this formula:

    =LEFT(B1,FIND(“/”,B1,9)-1)

    What this will do is remove everything after the trailing slash following the domain name. http://www.example.com/article.html will now become http://www.example.com and http://www.subdomain.example.com/article.html will now become http://www.subdomain.example.com.

  • Copy our new column A and paste it right back where it was using the “paste as values” function. If you don’t do this, you won’t be able to use the Find and Replace feature.
  • Use Find and Replace to replace each of the following with a blank (i.e. nothing):
    http://
    https://
    www.

And BOOM! We are left with a column that contains just domain names and subdomain names. This animated gif shows each of the steps we just outlined:

2. Just show one link from each domain

The next step is to filter this list so that we are just seeing one link from each domain. If you are manually reviewing links, there’s usually no point in reviewing every single link from every domain. I will throw in a word of caution here though. Sometimes a domain can have both a good link and a bad link pointing to you. Or in some cases, you may find that links from one page are followed and from another page on the same site they are nofollowed. You can miss some of these by just looking at one link from each domain. Personally, I have some checks built in to my process where I use Scrapebox and some internal tools that I have created to make sure that I’m not missing the odd link by just looking at one link from each domain. For most link audits, however, you are not going to miss very much by assessing one link from each domain.

Here’s how we do it:

  • Highlight our domains column and sort the column in alphabetical order.
  • Create a column to the left of our domains, so that the domains are in column B.
  • Use this formula:

    =IF(B1=B2,”duplicate”,”unique”)

  • Copy that formula down the column.
  • Use the filter function so that you are just seeing the duplicates.
  • Delete those rows. Note: If you have tens of thousands of rows to delete, the spreadsheet may crash. A workaround here is to use “Clear Rows” instead of “Delete Rows” and then sort your domains column from A-Z once you are finished.

We’ve now got a list of one link from every domain linking to us.

Here’s the gif that shows each of these steps:

You may wonder why I didn’t use Excel’s dedupe function to simply deduplicate these entries. I have found that it doesn’t take much deduplication to crash Excel, which is why I do this step manually.

3. Finding patterns FTW!

Sometimes when you are auditing links, you’ll find that unnatural links have patterns. I LOVE when I see these, because sometimes I can quickly go through hundreds of links without having to check each one manually. Here is an example. Let’s say that your website has a bunch of spammy directory links. As you’re auditing you notice patterns such as one of these:

  • All of these directory links come from a url that contains …/computers/internet/item40682/
  • A whole bunch of spammy links that all come from a particular free subdomain like blogspot, wordpress, weebly, etc.
  • A lot of links that all contain a particular keyword for anchor text (this is assuming you’ve included anchor text in your spreadsheet when making it.)

You can quickly find all of these links and mark them as “disavow” or “keep” by doing the following:

  • Create a new column. In my example, I am going to create a new column in Column C and look for patterns in urls that are in Column B.
  • Use this formula:

    =FIND(“/item40682”,B1)
    (You would replace “item40682” with the phrase that you are looking for.)

  • Copy this formula down the column.
  • Filter your new column so that you are seeing any rows that have a number in this column. If the phrase doesn’t exist in that url, you’ll see “N/A”, and we can ignore those.
  • Now you can mark these all as disavow

4. Check your disavow file

This next tip is one that you can use to check your disavow file across your list of domains that you want to audit. The goal here is to see which links you have disavowed so that you don’t waste time reassessing them. This particular tip only works for checking links that you have disavowed on the domain level.

The first thing you’ll want to do is download your current disavow file from Google. For some strange reason, Google gives you the disavow file in CSV format. I have never understood this because they want you to upload the file in .txt. Still, I guess this is what works best for Google. All of your entries will be in column A of the CSV:

What we are going to do now is add these to a new sheet on our current spreadsheet and use a VLOOKUP function to mark which of our domains we have disavowed.

Here are the steps:

  • Create a new sheet on your current spreadsheet workbook.
  • Copy and paste column A from your disavow spreadsheet onto this new sheet. Or, alternatively, use the import function to import the entire CSV onto this sheet.
  • In B1, write “previously disavowed” and copy this down the entire column.
  • Remove the “domain:” from each of the entries by doing a Find and Replace to replace domain: with a blank.
  • Now go back to your link audit spreadsheet. If your domains are in column A and if you had, say, 1500 domains in your disavow file, your formula would look like this:

    =VLOOKUP(A1,Sheet2!$A$1:$B$1500,2,FALSE)

When you copy this formula down the spreadsheet, it will check each of your domains, and if it finds the domain in Sheet 2, it will write “previously disavowed” on our link audit spreadsheet.

Here is a gif that shows the process:

5. Make monthly or quarterly disavow work easier

That same formula described above is a great one to use if you are doing regular repeated link audits. In this case, your second sheet on your spreadsheet would contain domains that you have previously audited, and column B of this spreadsheet would say, “previously audited” rather than “previously disavowed“.

Your tips?

These are just a few of the formulas that you can use to help make link auditing work easier. But there are lots of other things you can do with Excel or Google Sheets to help speed up the process as well. If you have some tips to add, leave a comment below. Also, if you need clarification on any of these tips, I’m happy to answer questions in the comments section.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

[ccw-atrib-link]

Using Term Frequency Analysis to Measure Your Content Quality

Posted by EricEnge

It’s time to look at your content differently—time to start understanding just how good it really is. I am not simply talking about titles, keyword usage, and meta descriptions. I am talking about the entire page experience. In today’s post, I am going to introduce the general concept of content quality analysis, why it should matter to you, and how to use term frequency (TF) analysis to gather ideas on how to improve your content.

TF analysis is usually combined with inverse document frequency analysis (collectively TF-IDF analysis). TF-IDF analysis has been a staple concept for information retrieval science for a long time. You can read more about TF-IDF and other search science concepts in Cyrus Shepard’s
excellent article here.

For purposes of today’s post, I am going to show you how you can use TF analysis to get clues as to what Google is valuing in the content of sites that currently outrank you. But first, let’s get oriented.

Conceptualizing page quality

Start by asking yourself if your page provides a quality experience to people who visit it. For example, if a search engine sends 100 people to your page, how many of them will be happy? Seventy percent? Thirty percent? Less? What if your competitor’s page gets a higher percentage of happy users than yours does? Does that feel like an “uh-oh”?

Let’s think about this with a specific example in mind. What if you ran a golf club site, and 100 people come to your page after searching on a phrase like “golf clubs.” What are the kinds of things they may be looking for?

Here are some things they might want:

  1. A way to buy golf clubs on your site (you would need to see a shopping cart of some sort).
  2. The ability to select specific brands, perhaps by links to other pages about those brands of golf clubs.
  3. Information on how to pick the club that is best for them.
  4. The ability to select specific types of clubs (drivers, putters, irons, etc.). Again, this may be via links to other pages.
  5. A site search box.
  6. Pricing info.
  7. Info on shipping costs.
  8. Expert analysis comparing different golf club brands.
  9. End user reviews of your company so they can determine if they want to do business with you.
  10. How your return policy works.
  11. How they can file a complaint.
  12. Information about your company. Perhaps an “about us” page.
  13. A link to a privacy policy page.
  14. Whether or not you have been “in the news” recently.
  15. Trust symbols that show that you are a reputable organization.
  16. A way to access pages to buy different products, such as golf balls or tees.
  17. Information about specific golf courses.
  18. Tips on how to improve their golf game.

This is really only a partial list, and the specifics of your site can certainly vary for any number of reasons from what I laid out above. So how do you figure out what it is that people really want? You could pull in data from a number of sources. For example, using data from your site search box can be invaluable. You can do user testing on your site. You can conduct surveys. These are all good sources of data.

You can also look at your analytics data to see what pages get visited the most. Just be careful how you use that data. For example, if most of your traffic is from search, this data will be biased by incoming search traffic, and hence what Google chooses to rank. In addition, you may only have a small percentage of the visitors to your site going to your privacy policy, but chances are good that there are significantly more users than that who notice whether or not you have a privacy policy. Many of these will be satisfied just to see that you have one and won’t actually go check it out.

Whatever you do, it’s worth using many of these methods to determine what users want from the pages of your site and then using the resulting information to improve your overall site experience.

Is Google using this type of info as a ranking factor?

At some level, they clearly are. Clearly Google and Bing have evolved far beyond the initial TF-IDF concepts, but we can still use them to better understand our own content.

The first major indication we had that Google was performing content quality analysis was with the release of the
Panda algorithm in February of 2011. More recently, we know that on April 21 Google will release an algorithm that makes the mobile friendliness of a web site a ranking factor. Pure and simple, this algo is about the user experience with a page.

Exactly how Google is performing these measurements is not known, but
what we do know is their intent. They want to make their search engine look good, largely because it helps them make more money. Sending users to pages that make them happy will do that. Google has every incentive to improve the quality of their search results in as many ways as they can.

Ultimately, we don’t actually know what Google is measuring and using. It may be that the only SEO impact of providing pages that satisfy a very high percentage of users is an indirect one. I.e., so many people like your site that it gets written about more, linked to more, has tons of social shares, gets great engagement, that Google sees other signals that it uses as ranking factors, and this is why your rankings improve.

But, do I care if the impact is a direct one or an indirect one? Well, NO.

Using TF analysis to evaluate your page

TF-IDF analysis is more about relevance than content quality, but we can still use various precepts from it to help us understand our own content quality. One way to do this is to compare the results of a TF analysis of all the keywords on your page with those pages that currently outrank you in the search results. In this section, I am going to outline the basic concepts for how you can do this. In the next section I will show you a process that you can use with publicly available tools and a spreadsheet.

The simplest form of TF analysis is to count the number of uses of each keyword on a page. However, the problem with that is that a page using a keyword 10 times will be seen as 10 times more valuable than a page that uses a keyword only once. For that reason, we dampen the calculations. I have seen two methods for doing this, as follows:

term frequency calculation

The first method relies on dividing the number of repetitions of a keyword by the count for the most popular word on the entire page. Basically, what this does is eliminate the inherent advantage that longer documents might otherwise have over shorter ones. The second method dampens the total impact in a different way, by taking the log base 10 for the actual keyword count. Both of these achieve the effect of still valuing incremental uses of a keyword, but dampening it substantially. I prefer to use method 1, but you can use either method for our purposes here.

Once you have the TF calculated for every different keyword found on your page, you can then start to do the same analysis for pages that outrank you for a given search term. If you were to do this for five competing pages, the result might look something like this:

term frequency spreadsheet

I will show you how to set up the spreadsheet later, but for now, let’s do the fun part, which is to figure out how to analyze the results. Here are some of the things to look for:

  1. Are there any highly related words that all or most of your competitors are using that you don’t use at all?
  2. Are there any such words that you use significantly less, on average, than your competitors?
  3. Also look for words that you use significantly more than competitors.

You can then tag these words for further analysis. Once you are done, your spreadsheet may now look like this:

second stage term frequency analysis spreadsheet

In order to make this fit into this screen shot above and keep it legibly, I eliminated some columns you saw in my first spreadsheet. However, I did a sample analysis for the movie “Woman in Gold”. You can see the
full spreadsheet of calculations here. Note that we used an automated approach to marking some items at “Low Ratio,” “High Ratio,” or “All Competitors Have, Client Does Not.”

None of these flags by themselves have meaning, so you now need to put all of this into context. In our example, the following words probably have no significance at all: “get”, “you”, “top”, “see”, “we”, “all”, “but”, and other words of this type. These are just very basic English language words.

But, we can see other things of note relating to the target page (a.k.a. the client page):

  1. It’s missing any mention of actor ryan reynolds
  2. It’s missing any mention of actor helen mirren
  3. The page has no reviews
  4. Words like “family” and “story” are not mentioned
  5. “Austrian” and “maria altmann” are not used at all
  6. The phrase “woman in gold” and words “billing” and “info” are used proportionally more than they are with the other pages

Note that the last item is only visible if you open
the spreadsheet. The issues above could well be significant, as the lead actors, reviews, and other indications that the page has in-depth content. We see that competing pages that rank have details of the story, so that’s an indication that this is what Google (and users) are looking for. The fact that the main key phrase, and the word “billing”, are used to a proportionally high degree also makes it seem a bit spammy.

In fact, if you look at the information closely, you can see that the target page is quite thin in overall content. So much so, that it almost looks like a doorway page. In fact, it looks like it was put together by the movie studio itself, just not very well, as it presents little in the way of a home page experience that would cause it to rank for the name of the movie!

In the many different times I have done an analysis using these methods, I’ve been able to make many different types of observations about pages. A few of the more interesting ones include:

  1. A page that had no privacy policy, yet was taking personally identifiable info from users.
  2. A major lack of important synonyms that would indicate a real depth of available content.
  3. Comparatively low Domain Authority competitors ranking with in-depth content.

These types of observations are interesting and valuable, but it’s important to stress that you shouldn’t be overly mechanical about this. The value in this type of analysis is that it gives you a technical way to compare the content on your page with that of your competitors. This type of analysis should be used in combination with other methods that you use for evaluating that same page. I’ll address this some more in the summary section of this below.

How do you execute this for yourself?

The
full spreadsheet contains all the formulas so all you need to do is link in the keyword count data. I have tried this with two different keyword density tools, the one from Searchmetrics, and this one from motoricerca.info.

I am not endorsing these tools, and I have no financial interest in either one—they just seemed to work fairly well for the process I outlined above. To provide the data in the right format, please do the following:

  1. Run all the URLs you are testing through the keyword density tool.
  2. Copy and paste all the one word, two word, and three word results into a tab on the spreadsheet.
  3. Sort them all so you get total word counts aligned by position as I have shown in the linked spreadsheet.
  4. Set up the formulas as I did in the demo spreadsheet (you can just use the demo spreadsheet).
  5. Then do your analysis!

This may sound a bit tedious (and it is), but it has worked very well for us at STC.

Summary

You can also use usability groups and a number of other methods to figure out what users are really looking for on your site. However, what this does is give us a look at what Google has chosen to rank the highest in its search results. Don’t treat this as some sort of magic formula where you mechanically tweak the content to get better metrics in this analysis.

Instead, use this as a method for slicing into your content to better see it the way a machine might see it. It can yield some surprising (and wonderful) insights!

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

[ccw-atrib-link]

In-App Social & Contact Data – New in Open Site Explorer

Posted by randfish

Today I’m excited to announce the launch of a new feature inside 
Open Site Explorer—In-App Social & Contact Data. 

With this launch, you’ll be able to see the
social or email accounts we’ve discovered associated with a given website, and have one-click access to those pages.


Initially, the feature offers:

  1. Availability today on the inbound links tab and in Link Intersect on the “pages -> subdomains” view. In the future, if y’all find it useful, we hope to expand its presence to other areas of the tool as well.
  2. Email accounts will only be shown if they match the domain name (e.g. rand@moz.com would be shown next to moz.com, randfishkin@yahoo.com would not) and if they appear in standard format on the page (we don’t try to grab emails in JavaScript or that use alternate formats to obsfucate).
  3. We show Facebook, Twitter, Google+, and email addresses we’ve found on multiple pages of the site (we take a small random set and analyze whether these social/contact data pieces are uniform). If we find multiple accounts, you’ll see this:

Use cases

There are three major use cases for this feature (at least for me; you might have more!):

1) Link/Outreach prospecting

It can be a pain to visit sites, find social accounts/emails, and copy them into a spreadsheet or send messages (and recall which ones you have/haven’t done yet). By including social/contact data in the same interface where you’re doing link analysis, we hope to save you time and clicks.

2) Link/site trust and audience reach analysis

We’re actually using this data on the back end at Moz for our upcoming Spam Score feature (coming very soon), but you can use it manually to help with a quick mental filter for trustworthy/authoritative/non-spammy sites, and to get a sense for the size and reach of a site’s social audience.

3) At-a-glance analysis of social networks among a group

If you’re in a given space (e.g. travel blogs), it’s a process to determine which social networks are/aren’t being used by industry participants and influencers. Social/contact data in OSE can help with that by showing which social networks various sites are using and linking to from their pages:

We need your feedback

This first implementation is relatively light in the app—we haven’t yet placed this data anywhere/everywhere it might be useful. Before we do, we want to hear what you think: Is this useful and valuable to your work? Does it help save you time? Would you want to see the feature expanded and if so, in what sections would it provide the greatest value to you? Please let us know in the comments, and by getting back in touch with us after you’ve had a chance to try it out for yourself.

Thanks for giving social/contact data a spin, and look for more upgrades to Open Site Explorer in the very near future!

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

[ccw-atrib-link]

Google Sites Mail Merge -2nd Place Award in cloudspokes contest

Mail Merge using Google Sites. Allow the choosing of templates to be selected for mail merge and pull a user list from CSV or Google spreadsheet for emailing…

[ccw-atrib-link]