Why Effective, Modern SEO Requires Technical, Creative, and Strategic Thinking – Whiteboard Friday

Posted by randfish

There’s no doubt that quite a bit has changed about SEO, and that the field is far more integrated with other aspects of online marketing than it once was. In today’s Whiteboard Friday, Rand pushes back against the idea that effective modern SEO doesn’t require any technical expertise, outlining a fantastic list of technical elements that today’s SEOs need to know about in order to be truly effective.

For reference, here’s a still of this week’s whiteboard. Click on it to open a high resolution image in a new tab!

Video transcription

Howdy, Moz fans, and welcome to another edition of Whiteboard Friday. This week I’m going to do something unusual. I don’t usually point out these inconsistencies or sort of take issue with other folks’ content on the web, because I generally find that that’s not all that valuable and useful. But I’m going to make an exception here.

There is an article by Jayson DeMers, who I think might actually be here in Seattle — maybe he and I can hang out at some point — called “Why Modern SEO Requires Almost No Technical Expertise.” It was an article that got a shocking amount of traction and attention. On Facebook, it has thousands of shares. On LinkedIn, it did really well. On Twitter, it got a bunch of attention.

Some folks in the SEO world have already pointed out some issues around this. But because of the increasing popularity of this article, and because I think there’s, like, this hopefulness from worlds outside of kind of the hardcore SEO world that are looking to this piece and going, “Look, this is great. We don’t have to be technical. We don’t have to worry about technical things in order to do SEO.”

Look, I completely get the appeal of that. I did want to point out some of the reasons why this is not so accurate. At the same time, I don’t want to rain on Jayson, because I think that it’s very possible he’s writing an article for Entrepreneur, maybe he has sort of a commitment to them. Maybe he had no idea that this article was going to spark so much attention and investment. He does make some good points. I think it’s just really the title and then some of the messages inside there that I take strong issue with, and so I wanted to bring those up.

First off, some of the good points he did bring up.

One, he wisely says, “You don’t need to know how to code or to write and read algorithms in order to do SEO.” I totally agree with that. If today you’re looking at SEO and you’re thinking, “Well, am I going to get more into this subject? Am I going to try investing in SEO? But I don’t even know HTML and CSS yet.”

Those are good skills to have, and they will help you in SEO, but you don’t need them. Jayson’s totally right. You don’t have to have them, and you can learn and pick up some of these things, and do searches, watch some Whiteboard Fridays, check out some guides, and pick up a lot of that stuff later on as you need it in your career. SEO doesn’t have that hard requirement.

And secondly, he makes an intelligent point that we’ve made many times here at Moz, which is that, broadly speaking, a better user experience is well correlated with better rankings.

You make a great website that delivers great user experience, that provides the answers to searchers’ questions and gives them extraordinarily good content, way better than what’s out there already in the search results, generally speaking you’re going to see happy searchers, and that’s going to lead to higher rankings.

But not entirely. There are a lot of other elements that go in here. So I’ll bring up some frustrating points around the piece as well.

First off, there’s no acknowledgment — and I find this a little disturbing — that the ability to read and write code, or even HTML and CSS, which I think are the basic place to start, is helpful or can take your SEO efforts to the next level. I think both of those things are true.

So being able to look at a web page, view source on it, or pull up Firebug in Firefox or something and diagnose what’s going on and then go, “Oh, that’s why Google is not able to see this content. That’s why we’re not ranking for this keyword or term, or why even when I enter this exact sentence in quotes into Google, which is on our page, this is why it’s not bringing it up. It’s because it’s loading it after the page from a remote file that Google can’t access.” These are technical things, and being able to see how that code is built, how it’s structured, and what’s going on there, very, very helpful.

Some coding knowledge also can take your SEO efforts even further. I mean, so many times, SEOs are stymied by the conversations that we have with our programmers and our developers and the technical staff on our teams. When we can have those conversations intelligently, because at least we understand the principles of how an if-then statement works, or what software engineering best practices are being used, or they can upload something into a GitHub repository, and we can take a look at it there, that kind of stuff is really helpful.

Secondly, I don’t like that the article overly reduces all of this information that we have about what we’ve learned about Google. So he mentions two sources. One is things that Google tells us, and others are SEO experiments. I think both of those are true. Although I’d add that there’s sort of a sixth sense of knowledge that we gain over time from looking at many, many search results and kind of having this feel for why things rank, and what might be wrong with a site, and getting really good at that using tools and data as well. There are people who can look at Open Site Explorer and then go, “Aha, I bet this is going to happen.” They can look, and 90% of the time they’re right.

So he boils this down to, one, write quality content, and two, reduce your bounce rate. Neither of those things are wrong. You should write quality content, although I’d argue there are lots of other forms of quality content that aren’t necessarily written — video, images and graphics, podcasts, lots of other stuff.

And secondly, that just doing those two things is not always enough. So you can see, like many, many folks look and go, “I have quality content. It has a low bounce rate. How come I don’t rank better?” Well, your competitors, they’re also going to have quality content with a low bounce rate. That’s not a very high bar.

Also, frustratingly, this really gets in my craw. I don’t think “write quality content” means anything. You tell me. When you hear that, to me that is a totally non-actionable, non-useful phrase that’s a piece of advice that is so generic as to be discardable. So I really wish that there was more substance behind that.

The article also makes, in my opinion, the totally inaccurate claim that modern SEO really is reduced to “the happier your users are when they visit your site, the higher you’re going to rank.”

Wow. Okay. Again, I think broadly these things are correlated. User happiness and rank is broadly correlated, but it’s not a one to one. This is not like a, “Oh, well, that’s a 1.0 correlation.”

I would guess that the correlation is probably closer to like the page authority range. I bet it’s like 0.35 or something correlation. If you were to actually measure this broadly across the web and say like, “Hey, were you happier with result one, two, three, four, or five,” the ordering would not be perfect at all. It probably wouldn’t even be close.

There’s a ton of reasons why sometimes someone who ranks on Page 2 or Page 3 or doesn’t rank at all for a query is doing a better piece of content than the person who does rank well or ranks on Page 1, Position 1.

Then the article suggests five and sort of a half steps to successful modern SEO, which I think is a really incomplete list. So Jayson gives us;

  • Good on-site experience
  • Writing good content
  • Getting others to acknowledge you as an authority
  • Rising in social popularity
  • Earning local relevance
  • Dealing with modern CMS systems (which he notes most modern CMS systems are SEO-friendly)

The thing is there’s nothing actually wrong with any of these. They’re all, generally speaking, correct, either directly or indirectly related to SEO. The one about local relevance, I have some issue with, because he doesn’t note that there’s a separate algorithm for sort of how local SEO is done and how Google ranks local sites in maps and in their local search results. Also not noted is that rising in social popularity won’t necessarily directly help your SEO, although it can have indirect and positive benefits.

I feel like this list is super incomplete. Okay, I brainstormed just off the top of my head in the 10 minutes before we filmed this video a list. The list was so long that, as you can see, I filled up the whole whiteboard and then didn’t have any more room. I’m not going to bother to erase and go try and be absolutely complete.

But there’s a huge, huge number of things that are important, critically important for technical SEO. If you don’t know how to do these things, you are sunk in many cases. You can’t be an effective SEO analyst, or consultant, or in-house team member, because you simply can’t diagnose the potential problems, rectify those potential problems, identify strategies that your competitors are using, be able to diagnose a traffic gain or loss. You have to have these skills in order to do that.

I’ll run through these quickly, but really the idea is just that this list is so huge and so long that I think it’s very, very, very wrong to say technical SEO is behind us. I almost feel like the opposite is true.

We have to be able to understand things like;

  • Content rendering and indexability
  • Crawl structure, internal links, JavaScript, Ajax. If something’s post-loading after the page and Google’s not able to index it, or there are links that are accessible via JavaScript or Ajax, maybe Google can’t necessarily see those or isn’t crawling them as effectively, or is crawling them, but isn’t assigning them as much link weight as they might be assigning other stuff, and you’ve made it tough to link to them externally, and so they can’t crawl it.
  • Disabling crawling and/or indexing of thin or incomplete or non-search-targeted content. We have a bunch of search results pages. Should we use rel=prev/next? Should we robots.txt those out? Should we disallow from crawling with meta robots? Should we rel=canonical them to other pages? Should we exclude them via the protocols inside Google Webmaster Tools, which is now Google Search Console?
  • Managing redirects, domain migrations, content updates. A new piece of content comes out, replacing an old piece of content, what do we do with that old piece of content? What’s the best practice? It varies by different things. We have a whole Whiteboard Friday about the different things that you could do with that. What about a big redirect or a domain migration? You buy another company and you’re redirecting their site to your site. You have to understand things about subdomain structures versus subfolders, which, again, we’ve done another Whiteboard Friday about that.
  • Proper error codes, downtime procedures, and not found pages. If your 404 pages turn out to all be 200 pages, well, now you’ve made a big error there, and Google could be crawling tons of 404 pages that they think are real pages, because you’ve made it a status code 200, or you’ve used a 404 code when you should have used a 410, which is a permanently removed, to be able to get it completely out of the indexes, as opposed to having Google revisit it and keep it in the index.

Downtime procedures. So there’s specifically a… I can’t even remember. It’s a 5xx code that you can use. Maybe it was a 503 or something that you can use that’s like, “Revisit later. We’re having some downtime right now.” Google urges you to use that specific code rather than using a 404, which tells them, “This page is now an error.”

Disney had that problem a while ago, if you guys remember, where they 404ed all their pages during an hour of downtime, and then their homepage, when you searched for Disney World, was, like, “Not found.” Oh, jeez, Disney World, not so good.

  • International and multi-language targeting issues. I won’t go into that. But you have to know the protocols there. Duplicate content, syndication, scrapers. How do we handle all that? Somebody else wants to take our content, put it on their site, what should we do? Someone’s scraping our content. What can we do? We have duplicate content on our own site. What should we do?
  • Diagnosing traffic drops via analytics and metrics. Being able to look at a rankings report, being able to look at analytics connecting those up and trying to see: Why did we go up or down? Did we have less pages being indexed, more pages being indexed, more pages getting traffic less, more keywords less?
  • Understanding advanced search parameters. Today, just today, I was checking out the related parameter in Google, which is fascinating for most sites. Well, for Moz, weirdly, related:oursite.com shows nothing. But for virtually every other sit, well, most other sites on the web, it does show some really interesting data, and you can see how Google is connecting up, essentially, intentions and topics from different sites and pages, which can be fascinating, could expose opportunities for links, could expose understanding of how they view your site versus your competition or who they think your competition is.

Then there are tons of parameters, like in URL and in anchor, and da, da, da, da. In anchor doesn’t work anymore, never mind about that one.

I have to go faster, because we’re just going to run out of these. Like, come on. Interpreting and leveraging data in Google Search Console. If you don’t know how to use that, Google could be telling you, you have all sorts of errors, and you don’t know what they are.

  • Leveraging topic modeling and extraction. Using all these cool tools that are coming out for better keyword research and better on-page targeting. I talked about a couple of those at MozCon, like MonkeyLearn. There’s the new Moz Context API, which will be coming out soon, around that. There’s the Alchemy API, which a lot of folks really like and use.
  • Identifying and extracting opportunities based on site crawls. You run a Screaming Frog crawl on your site and you’re going, “Oh, here’s all these problems and issues.” If you don’t have these technical skills, you can’t diagnose that. You can’t figure out what’s wrong. You can’t figure out what needs fixing, what needs addressing.
  • Using rich snippet format to stand out in the SERPs. This is just getting a better click-through rate, which can seriously help your site and obviously your traffic.
  • Applying Google-supported protocols like rel=canonical, meta description, rel=prev/next, hreflang, robots.txt, meta robots, x robots, NOODP, XML sitemaps, rel=nofollow. The list goes on and on and on. If you’re not technical, you don’t know what those are, you think you just need to write good content and lower your bounce rate, it’s not going to work.
  • Using APIs from services like AdWords or MozScape, or hrefs from Majestic, or SEM refs from SearchScape or Alchemy API. Those APIs can have powerful things that they can do for your site. There are some powerful problems they could help you solve if you know how to use them. It’s actually not that hard to write something, even inside a Google Doc or Excel, to pull from an API and get some data in there. There’s a bunch of good tutorials out there. Richard Baxter has one, Annie Cushing has one, I think Distilled has some. So really cool stuff there.
  • Diagnosing page load speed issues, which goes right to what Jayson was talking about. You need that fast-loading page. Well, if you don’t have any technical skills, you can’t figure out why your page might not be loading quickly.
  • Diagnosing mobile friendliness issues
  • Advising app developers on the new protocols around App deep linking, so that you can get the content from your mobile apps into the web search results on mobile devices. Awesome. Super powerful. Potentially crazy powerful, as mobile search is becoming bigger than desktop.

Okay, I’m going to take a deep breath and relax. I don’t know Jayson’s intention, and in fact, if he were in this room, he’d be like, “No, I totally agree with all those things. I wrote the article in a rush. I had no idea it was going to be big. I was just trying to make the broader points around you don’t have to be a coder in order to do SEO.” That’s completely fine.

So I’m not going to try and rain criticism down on him. But I think if you’re reading that article, or you’re seeing it in your feed, or your clients are, or your boss is, or other folks are in your world, maybe you can point them to this Whiteboard Friday and let them know, no, that’s not quite right. There’s a ton of technical SEO that is required in 2015 and will be for years to come, I think, that SEOs have to have in order to be effective at their jobs.

All right, everyone. Look forward to some great comments, and we’ll see you again next time for another edition of Whiteboard Friday. Take care.

Video transcription by Speechpad.com

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

The Meta Referrer Tag: An Advancement for SEO and the Internet

Posted by Cyrus-Shepard

The movement to make the Internet more secure through HTTPS brings several useful advancements for webmasters. In addition to security improvements, HTTPS promises future technological advances and potential SEO benefits for marketers.

HTTPS in search results is rising. Recent MozCast data from Dr. Pete shows nearly 20% of first page Google results are now HTTPS.

Sadly, HTTPS also has its downsides.

Marketers run into their first challenge when they switch regular HTTP sites over to HTTPS. Technically challenging, the switch typically involves routing your site through a series of 301 redirects. Historically, these types of redirects are associated with a loss of link equity (thought to be around 15%) which can lead to a loss in rankings. This can offset any SEO advantage that Google claims switching.

Ross Hudgens perfectly summed it up in this tweet:

Many SEOs have anecdotally shared stories of HTTPS sites performing well in Google search results (and our soon-to-be-published Ranking Factors data seems to support this.) However, the short term effect of a large migration can be hard to take. When Moz recently switched to HTTPS to provide better security to our logged-in users, we saw an 8-9% dip in our organic search traffic.

Problem number two is the subject of this post. It involves the loss of referral data. Typically, when one site sends traffic to another, information is sent that identifies the originating site as the source of traffic. This invaluable data allows people to see where their traffic is coming from, and helps spread the flow of information across the web.

SEOs have long used referrer data for a number of beneficial purposes. Oftentimes, people will link back or check out the site sending traffic when they see the referrer in their analytics data. Spammers know this works, as evidenced by the recent increase in referrer spam:

This process stops when traffic flows from an HTTPS site to a non-secure HTTP site. In this case, no referrer data is sent. Webmasters can’t know where their traffic is coming from.

Here’s how referral data to my personal site looked when Moz switched to HTTPS. I lost all visibility into where my traffic came from.

Its (not provided) all over again!

Enter the meta referrer tag

While we can’t solve the ranking challenges imposed by switching a site to HTTPS, we can solve the loss of referral data, and it’s actually super-simple.

Almost completely unknown to most marketers, the relatively new meta referrer tag (it’s actually been around for a few years) was designed to help out in these situations.

Better yet, the tag allows you to control how your referrer information is passed.

The meta referrer tag works with most browsers to pass referrer information in a manner defined by the user. Traffic remains encrypted and all the benefits of using HTTPS remain in place, but now you can pass referrer data to all websites, even those that use HTTP.

How to use the meta referrer tag

What follows are extremely simplified instructions for using the meta referrer tag. For more in-depth understanding, we highly recommend referring to the W3C working draft of the spec.

The meta referrer tag is placed in the <head> section of your HTML, and references one of five states, which control how browsers send referrer information from your site. The five states are:

  1. None: Never pass referral data
    <meta name="referrer" content="none">
    
  2. None When Downgrade: Sends referrer information to secure HTTPS sites, but not insecure HTTP sites
    <meta name="referrer" content="none-when-downgrade">
    
  3. Origin Only: Sends the scheme, host, and port (basically, the subdomain) stripped of the full URL as a referrer, i.e. https://moz.com/example.html would simply send https://moz.com
    <meta name="referrer" content="origin">
    

  4. Origin When Cross-Origin: Sends the full URL as the referrer when the target has the same scheme, host, and port (i.e. subdomain) regardless if it’s HTTP or HTTPS, while sending origin-only referral information to external sites. (note: There is a typo in the official spec. Future versions should be “origin-when-cross-origin”)
    <meta name="referrer" content="origin-when-crossorigin">
    
  5. Unsafe URL: Always passes the URL string as a referrer. Note if you have any sensitive information contained in your URL, this isn’t the safest option. By default, URL fragments, username, and password are automatically stripped out.
    <meta name="referrer" content="unsafe-url">
    

The meta referrer tag in action

By clicking the link below, you can get a sense of how the meta referrer tag works.

Check Referrer

Boom!

We’ve set the meta referrer tag for Moz to “origin”, which means when we link out to another site, we pass our scheme, host, and port. The end result is you see http://moz.com as the referrer, stripped of the full URL path (/meta-referrer-tag).

My personal site typically receives several visits per day from Moz. Here’s what my analytics data looked like before and after we implemented the meta referrer tag.

For simplicity and security, most sites may want to implement the “origin” state, but there are drawbacks.

One negative side effect was that as soon as we implemented the meta referrer tag, our AdRoll analytics, which we use for retargeting, stopped working. It turns out that AdRoll uses our referrer information for analytics, but the meta referrer tag “origin” state meant that the only URL they ever saw reported was https://moz.com.

Conclusion

We love the meta referrer tag because it keeps information flowing on the Internet. It’s the way the web is supposed to work!

It helps marketers and webmasters see exactly where their traffic is coming from. It encourages engagement, communication, and even linking, which can lead to improvements in SEO.

Useful links:

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

How to Rid Your Website of Six Common Google Analytics Headaches

Posted by amandaecking

I’ve been in and out of Google Analytics (GA) for the past five or so years agency-side. I’ve seen three different code libraries, dozens of new different features and reports roll out, IP addresses stop being reported, and keywords not-so-subtly phased out of the free platform.

Analytics has been a focus of mine for the past year or so—mainly, making sure clients get their data right. Right now, our new focus is closed loop tracking, but that’s a topic for another day. If you’re using Google Analytics, and only Google Analytics for the majority of your website stats, or it’s your primary vehicle for analysis, you need to make sure it’s accurate.

Not having data pulling in or reporting properly is like building a house on a shaky foundation: It doesn’t end well. Usually there are tears.

For some reason, a lot of people, including many of my clients, assume everything is tracking properly in Google Analytics… because Google. But it’s not Google who sets up your analytics. People do that. And people are prone to make mistakes.

I’m going to go through six scenarios where issues are commonly encountered with Google Analytics.

I’ll outline the remedy for each issue, and in the process, show you how to move forward with a diagnosis or resolution.

1. Self-referrals

This is probably one of the areas we’re all familiar with. If you’re seeing a lot of traffic from your own domain, there’s likely a problem somewhere—or you need to extend the default session length in Google Analytics. (For example, if you have a lot of long videos or music clips and don’t use event tracking; a website like TEDx or SoundCloud would be a good equivalent.)

Typically one of the first things I’ll do to help diagnose the problem is include an advanced filter to show the full referrer string. You do this by creating a filter, as shown below:

Filter Type: Custom filter > Advanced
Field A: Hostname
Extract A: (.*)
Field B: Request URI
Extract B: (.*)
Output To: Request URI
Constructor: $A1$B1

You’ll then start seeing the subdomains pulling in. Experience has shown me that if you have a separate subdomain hosted in another location (say, if you work with a separate company and they host and run your mobile site or your shopping cart), it gets treated by Google Analytics as a separate domain. Thus, you ‘ll need to implement cross domain tracking. This way, you can narrow down whether or not it’s one particular subdomain that’s creating the self-referrals.

In this example below, we can see all the revenue is being reported to the booking engine (which ended up being cross domain issues) and their own site is the fourth largest traffic source:

I’ll also a good idea to check the browser and device reports to start narrowing down whether the issue is specific to a particular element. If it’s not, keep digging. Look at pages pulling the self-referrals and go through the code with a fine-tooth comb, drilling down as much as you can.

2. Unusually low bounce rate

If you have a crazy-low bounce rate, it could be too good to be true. Unfortunately. An unusually low bounce rate could (and probably does) mean that at least on some pages of your website have the same Google Analytics tracking code installed twice.

Take a look at your source code, or use Google Tag Assistant (though it does have known bugs) to see if you’ve got GA tracking code installed twice.

While I tell clients having Google Analytics installed on the same page can lead to double the pageviews, I’ve not actually encountered that—I usually just say it to scare them into removing the duplicate implementation more quickly. Don’t tell on me.

3. Iframes anywhere

I’ve heard directly from Google engineers and Google Analytics evangelists that Google Analytics does not play well with iframes, and that it will never will play nice with this dinosaur technology.

If you track the iframe, you inflate your pageviews, plus you still aren’t tracking everything with 100% clarity.

If you don’t track across iframes, you lose the source/medium attribution and everything becomes a self-referral.

Damned if you do; damned if you don’t.

My advice: Stop using iframes. They’re Netscape-era technology anyway, with rainbow marquees and Comic Sans on top. Interestingly, and unfortunately, a number of booking engines (for hotels) and third-party carts (for ecommerce) still use iframes.

If you have any clients in those verticals, or if you’re in the vertical yourself, check with your provider to see if they use iframes. Or you can check for yourself, by right-clicking as close as you can to the actual booking element:

iframe-booking.png

There is no neat and tidy way to address iframes with Google Analytics, and usually iframes are not the only complicated element of setup you’ll encounter. I spent eight months dealing with a website on a subfolder, which used iframes and had a cross domain booking system, and the best visibility I was able to get was about 80% on a good day.

Typically, I’d approach diagnosing iframes (if, for some reason, I had absolutely no access to viewing a website or talking to the techs) similarly to diagnosing self-referrals, as self-referrals are one of the biggest symptoms of iframe use.

4. Massive traffic jumps

Massive jumps in traffic don’t typically just happen. (Unless, maybe, you’re Geraldine.) There’s always an explanation—a new campaign launched, you just turned on paid ads for the first time, you’re using content amplification platforms, you’re getting a ton of referrals from that recent press in The New York Times. And if you think it just happened, it’s probably a technical glitch.

I’ve seen everything from inflated pageviews result from including tracking on iframes and unnecessary implementation of virtual pageviews, to not realizing the tracking code was installed on other microsites for the same property. Oops.

Usually I’ve seen this happen when the tracking code was somewhere it shouldn’t be, so if you’re investigating a situation of this nature, first confirm the Google Analytics code is only in the places it needs to be.Tools like Google Tag Assistant and Screaming Frog can be your BFFs in helping you figure this out.

Also, I suggest bribing the IT department with sugar (or booze) to see if they’ve changed anything lately.

5. Cross-domain tracking

I wish cross-domain tracking with Google Analytics out of the box didn’t require any additional setup. But it does.

If you don’t have it set up properly, things break down quickly, and can be quite difficult to untangle.

The older the GA library you’re using, the harder it is. The easiest setup, by far, is Google Tag Manager with Universal Analytics. Hard-coded universal analytics is a bit more difficult because you have to implement autoLink manually and decorate forms, if you’re using them (and you probably are). Beyond that, rather than try and deal with it, I say update your Google Analytics code. Then we can talk.

Where I’ve seen the most murkiness with tracking is when parts of cross domain tracking are implemented, but not all. For some reason, if allowLinker isn’t included, or you forget to decorate all the forms, the cookies aren’t passed between domains.

The absolute first place I would start with this would be confirming the cookies are all passing properly at all the right points, forms, links, and smoke signals. I’ll usually use a combination of the Real Time report in Google Analytics, Google Tag Assistant, and GA debug to start testing this. Any debug tool you use will mean you’re playing in the console, so get friendly with it.

6. Internal use of UTM strings

I’ve saved the best for last. Internal use of campaign tagging. We may think, oh, I use Google to tag my campaigns externally, and we’ve got this new promotion on site which we’re using a banner ad for. That’s a campaign. Why don’t I tag it with a UTM string?

Step away from the keyboard now. Please.

When you tag internal links with UTM strings, you override the original source/medium. So that visitor who came in through your paid ad and then who clicks on the campaign banner has now been manually tagged. You lose the ability to track that they came through on the ad the moment they click on the tagged internal link. Their source and medium is now your internal campaign, not that paid ad you’re spending gobs of money on and have to justify to your manager. See the problem?

I’ve seen at least three pretty spectacular instances of this in the past year, and a number of smaller instances of it. Annie Cushing also talks about the evils of internal UTM tags and the odd prevalence of it. (Oh, and if you haven’t explored her blog, and the amazing spreadsheets she shares, please do.)

One clothing company I worked with tagged all of their homepage offers with UTM strings, which resulted in the loss of visibility for one-third of their audience: One million visits over the course of a year, and $2.1 million in lost revenue.

Let me say that again. One million visits, and $2.1 million. That couldn’t be attributed to an external source/campaign/spend.

Another client I audited included campaign tagging on nearly every navigational element on their website. It still gives me nightmares.

If you want to see if you have any internal UTM strings, head straight to the Campaigns report in Acquisition in Google Analytics, and look for anything like “home” or “navigation” or any language you may use internally to refer to your website structure.

And if you want to see how users are moving through your website, go to the Flow reports. Or if you really, really, really want to know how many people click on that sidebar link, use event tracking. But please, for the love of all things holy (and to keep us analytics lovers from throwing our computers across the room), stop using UTM tagging on your internal links.

Now breathe and smile

Odds are, your Google Analytics setup is fine. If you are seeing any of these issues, though, you have somewhere to start in diagnosing and addressing the data.

We’ve looked at six of the most common points of friction I’ve encountered with Google Analytics and how to start investigating them: self-referrals, bounce rate, iframes, traffic jumps, cross domain tracking and internal campaign tagging.

What common data integrity issues have you encountered with Google Analytics? What are your favorite tools to investigate?

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

5 Spreadsheet Tips for Manual Link Audits

Posted by MarieHaynes

Link auditing is the part of my job that I love the most. I have audited a LOT of links over the last few years. While there are some programs out there that can be quite helpful to the avid link auditor, I still prefer to create a spreadsheet of my links in Excel and then to audit those links one-by-one from within Google Spreadsheets. Over the years I have learned a few tricks and formulas that have helped me in this process. In this article, I will share several of these with you.

Please know that while I am quite comfortable being labelled a link auditing expert, I am not an Excel wizard. I am betting that some of the things that I am doing could be improved upon if you’re an advanced user. As such, if you have any suggestions or tips of your own I’d love to hear them in the comments section!

1. Extract the domain or subdomain from a URL

OK. You’ve downloaded links from as many sources as possible and now you want to manually visit and evaluate one link from every domain. But, holy moly, some of these domains can have THOUSANDS of links pointing to the site. So, let’s break these down so that you are just seeing one link from each domain. The first step is to extract the domain or subdomain from each url.

I am going to show you examples from a Google spreadsheet as I find that these display nicer for demonstration purposes. However, if you’ve got a fairly large site, you’ll find that the spreadsheets are easier to create in Excel. If you’re confused about any of these steps, check out the animated gif at the end of each step to see the process in action.

Here is how you extract a domain or subdomain from a url:

  • Create a new column to the left of your url column.
  • Use this formula:

    =LEFT(B1,FIND(“/”,B1,9)-1)

    What this will do is remove everything after the trailing slash following the domain name. http://www.example.com/article.html will now become http://www.example.com and http://www.subdomain.example.com/article.html will now become http://www.subdomain.example.com.

  • Copy our new column A and paste it right back where it was using the “paste as values” function. If you don’t do this, you won’t be able to use the Find and Replace feature.
  • Use Find and Replace to replace each of the following with a blank (i.e. nothing):
    http://
    https://
    www.

And BOOM! We are left with a column that contains just domain names and subdomain names. This animated gif shows each of the steps we just outlined:

2. Just show one link from each domain

The next step is to filter this list so that we are just seeing one link from each domain. If you are manually reviewing links, there’s usually no point in reviewing every single link from every domain. I will throw in a word of caution here though. Sometimes a domain can have both a good link and a bad link pointing to you. Or in some cases, you may find that links from one page are followed and from another page on the same site they are nofollowed. You can miss some of these by just looking at one link from each domain. Personally, I have some checks built in to my process where I use Scrapebox and some internal tools that I have created to make sure that I’m not missing the odd link by just looking at one link from each domain. For most link audits, however, you are not going to miss very much by assessing one link from each domain.

Here’s how we do it:

  • Highlight our domains column and sort the column in alphabetical order.
  • Create a column to the left of our domains, so that the domains are in column B.
  • Use this formula:

    =IF(B1=B2,”duplicate”,”unique”)

  • Copy that formula down the column.
  • Use the filter function so that you are just seeing the duplicates.
  • Delete those rows. Note: If you have tens of thousands of rows to delete, the spreadsheet may crash. A workaround here is to use “Clear Rows” instead of “Delete Rows” and then sort your domains column from A-Z once you are finished.

We’ve now got a list of one link from every domain linking to us.

Here’s the gif that shows each of these steps:

You may wonder why I didn’t use Excel’s dedupe function to simply deduplicate these entries. I have found that it doesn’t take much deduplication to crash Excel, which is why I do this step manually.

3. Finding patterns FTW!

Sometimes when you are auditing links, you’ll find that unnatural links have patterns. I LOVE when I see these, because sometimes I can quickly go through hundreds of links without having to check each one manually. Here is an example. Let’s say that your website has a bunch of spammy directory links. As you’re auditing you notice patterns such as one of these:

  • All of these directory links come from a url that contains …/computers/internet/item40682/
  • A whole bunch of spammy links that all come from a particular free subdomain like blogspot, wordpress, weebly, etc.
  • A lot of links that all contain a particular keyword for anchor text (this is assuming you’ve included anchor text in your spreadsheet when making it.)

You can quickly find all of these links and mark them as “disavow” or “keep” by doing the following:

  • Create a new column. In my example, I am going to create a new column in Column C and look for patterns in urls that are in Column B.
  • Use this formula:

    =FIND(“/item40682”,B1)
    (You would replace “item40682” with the phrase that you are looking for.)

  • Copy this formula down the column.
  • Filter your new column so that you are seeing any rows that have a number in this column. If the phrase doesn’t exist in that url, you’ll see “N/A”, and we can ignore those.
  • Now you can mark these all as disavow

4. Check your disavow file

This next tip is one that you can use to check your disavow file across your list of domains that you want to audit. The goal here is to see which links you have disavowed so that you don’t waste time reassessing them. This particular tip only works for checking links that you have disavowed on the domain level.

The first thing you’ll want to do is download your current disavow file from Google. For some strange reason, Google gives you the disavow file in CSV format. I have never understood this because they want you to upload the file in .txt. Still, I guess this is what works best for Google. All of your entries will be in column A of the CSV:

What we are going to do now is add these to a new sheet on our current spreadsheet and use a VLOOKUP function to mark which of our domains we have disavowed.

Here are the steps:

  • Create a new sheet on your current spreadsheet workbook.
  • Copy and paste column A from your disavow spreadsheet onto this new sheet. Or, alternatively, use the import function to import the entire CSV onto this sheet.
  • In B1, write “previously disavowed” and copy this down the entire column.
  • Remove the “domain:” from each of the entries by doing a Find and Replace to replace domain: with a blank.
  • Now go back to your link audit spreadsheet. If your domains are in column A and if you had, say, 1500 domains in your disavow file, your formula would look like this:

    =VLOOKUP(A1,Sheet2!$A$1:$B$1500,2,FALSE)

When you copy this formula down the spreadsheet, it will check each of your domains, and if it finds the domain in Sheet 2, it will write “previously disavowed” on our link audit spreadsheet.

Here is a gif that shows the process:

5. Make monthly or quarterly disavow work easier

That same formula described above is a great one to use if you are doing regular repeated link audits. In this case, your second sheet on your spreadsheet would contain domains that you have previously audited, and column B of this spreadsheet would say, “previously audited” rather than “previously disavowed“.

Your tips?

These are just a few of the formulas that you can use to help make link auditing work easier. But there are lots of other things you can do with Excel or Google Sheets to help speed up the process as well. If you have some tips to add, leave a comment below. Also, if you need clarification on any of these tips, I’m happy to answer questions in the comments section.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Understanding and Applying Moz’s Spam Score Metric – Whiteboard Friday

Posted by randfish

This week, Moz released a new feature that we call Spam Score, which helps you analyze your link profile and weed out the spam (check out the blog post for more info). There have been some fantastic conversations about how it works and how it should (and shouldn’t) be used, and we wanted to clarify a few things to help you all make the best use of the tool.

In today’s Whiteboard Friday, Rand offers more detail on how the score is calculated, just what those spam flags are, and how we hope you’ll benefit from using it.

For reference, here’s a still of this week’s whiteboard. 

Click on the image above to open a high resolution version in a new tab!

Video transcription

Howdy Moz fans, and welcome to another edition of Whiteboard Friday. This week, we’re going to chat a little bit about Moz’s Spam Score. Now I don’t typically like to do Whiteboard Fridays specifically about a Moz project, especially when it’s something that’s in our toolset. But I’m making an exception because there have been so many questions and so much discussion around Spam Score and because I hope the methodology, the way we calculate things, the look at correlation and causation, when it comes to web spam, can be useful for everyone in the Moz community and everyone in the SEO community in addition to being helpful for understanding this specific tool and metric.

The 17-flag scoring system

I want to start by describing the 17 flag system. As you might know, Spam Score is shown as a score from 0 to 17. You either fire a flag or you don’t. Those 17 flags you can see a list of them on the blog post, and we’ll show that in there. Essentially, those flags correlate to the percentage of sites that we found with that count of flags, not those specific flags, just any count of those flags that were penalized or banned by Google. I’ll show you a little bit more in the methodology.

Basically, what this means is for sites that had 0 spam flags, none of the 17 flags that we had fired, that actually meant that 99.5% of those sites were not penalized or banned, on average, in our analysis and 0.5% were. At 3 flags, 4.2% of those sites, that’s actually still a huge number. That’s probably in the millions of domains or subdomains that Google has potentially still banned. All the way down here with 11 flags, it’s 87.3% that we did find banned. That seems pretty risky or penalized. It seems pretty risky. But 12.7% of those is still a very big number, again probably in the hundreds of thousands of unique websites that are not banned but still have these flags.

If you’re looking at a specific subdomain and you’re saying, “Hey, gosh, this only has 3 flags or 4 flags on it, but it’s clearly been penalized by Google, Moz’s score must be wrong,” no, that’s pretty comfortable. That should fit right into those kinds of numbers. Same thing down here. If you see a site that is not penalized but has a number of flags, that’s potentially an indication that you’re in that percentage of sites that we found not to be penalized.

So this is an indication of percentile risk, not a “this is absolutely spam” or “this is absolutely not spam.” The only caveat is anything with, I think, more than 13 flags, we found 100% of those to have been penalized or banned. Maybe you’ll find an odd outlier or two. Probably you won’t.

Correlation ≠ causation

Correlation is not causation. This is something we repeat all the time here at Moz and in the SEO community. We do a lot of correlation studies around these things. I think people understand those very well in the fields of social media and in marketing in general. Certainly in psychology and electoral voting and election polling results, people understand those correlations. But for some reason in SEO we sometimes get hung up on this.

I want to be clear. Spam flags and the count of spam flags correlates with sites we saw Google penalize. That doesn’t mean that any of the flags or combinations of flags actually cause the penalty. It could be that the things that are flags are not actually connected to the reasons Google might penalize something at all. Those could be totally disconnected.

We are not trying to say with the 17 flags these are causes for concern or you need to fix these. We are merely saying this feature existed on this website when we crawled it, or it had this feature, maybe it still has this feature. Therefore, we saw this count of these features that correlates to this percentile number, so we’re giving you that number. That’s all that the score intends to say. That’s all it’s trying to show. It’s trying to be very transparent about that. It’s not trying to say you need to fix these.

A lot of flags and features that are measured are perfectly fine things to have on a website, like no social accounts or email links. That’s a totally reasonable thing to have, but it is a flag because we saw it correlate. A number in your domain name, I think it’s fine if you want to have a number in your domain name. There’s plenty of good domains that have a numerical character in them. That’s cool.

TLD extension that happens to be used by lots of spammers, like a .info or a .cc or a number of other ones, that’s also totally reasonable. Just because lots of spammers happen to use those TLD extensions doesn’t mean you are necessarily spam because you use one.

Or low link diversity. Maybe you’re a relatively new site. Maybe your niche is very small, so the number of folks who point to your site tends to be small, and lots of the sites that organically naturally link to you editorially happen to link to you from many of their pages, and there’s not a ton of them. That will lead to low link diversity, which is a flag, but it isn’t always necessarily a bad thing. It might still nudge you to try and get some more links because that will probably help you, but that doesn’t mean you are spammy. It just means you fired a flag that correlated with a spam percentile.

The methodology we use

The methodology that we use, for those who are curious — and I do think this is a methodology that might be interesting to potentially apply in other places — is we brainstormed a large list of potential flags, a huge number. We cut that down to the ones we could actually do, because there were some that were just unfeasible for our technology team, our engineering team to do.

Then, we got a huge list, many hundreds of thousands of sites that were penalized or banned. When we say banned or penalized, what we mean is they didn’t rank on page one for either their own domain name or their own brand name, the thing between the
www and the .com or .net or .info or whatever it was. If you didn’t rank for either your full domain name, www and the .com or Moz, that would mean we said, “Hey, you’re penalized or banned.”

Now you might say, “Hey, Rand, there are probably some sites that don’t rank on page one for their own brand name or their own domain name, but aren’t actually penalized or banned.” I agree. That’s a very small number. Statistically speaking, it probably is not going to be impactful on this data set. Therefore, we didn’t have to control for that. We ended up not controlling for that.

Then we found which of the features that we ideated, brainstormed, actually correlated with the penalties and bans, and we created the 17 flags that you see in the product today. There are lots things that I thought were going to correlate, for example spammy-looking anchor text or poison keywords on the page, like Viagra, Cialis, Texas Hold’em online, pornography. Those things, not all of them anyway turned out to correlate well, and so they didn’t make it into the 17 flags list. I hope over time we’ll add more flags. That’s how things worked out.

How to apply the Spam Score metric

When you’re applying Spam Score, I think there are a few important things to think about. Just like domain authority, or page authority, or a metric from Majestic, or a metric from Google, or any other kind of metric that you might come up with, you should add it to your toolbox and to your metrics where you find it useful. I think playing around with spam, experimenting with it is a great thing. If you don’t find it useful, just ignore it. It doesn’t actually hurt your website. It’s not like this information goes to Google or anything like that. They have way more sophisticated stuff to figure out things on their end.

Do not just disavow everything with seven or more flags, or eight or more flags, or nine or more flags. I think that we use the color coding to indicate 0% to 10% of these flag counts were penalized or banned, 10% to 50% were penalized or banned, or 50% or above were penalized or banned. That’s why you see the green, orange, red. But you should use the count and line that up with the percentile. We do show that inside the tool as well.

Don’t just take everything and disavow it all. That can get you into serious trouble. Remember what happened with Cyrus. Cyrus Shepard, Moz’s head of content and SEO, he disavowed all the backlinks to its site. It took more than a year for him to rank for anything again. Google almost treated it like he was banned, not completely, but they seriously took away all of his link power and didn’t let him back in, even though he changed the disavow file and all that.

Be very careful submitting disavow files. You can hurt yourself tremendously. The reason we offer it in disavow format is because many of the folks in our customer testing said that’s how they wanted it so they could copy and paste, so they could easily review, so they could get it in that format and put it into their already existing disavow file. But you should not do that. You’ll see a bunch of warnings if you try and generate a disavow file. You even have to edit your disavow file before you can submit it to Google, because we want to be that careful that you don’t go and submit.

You should expect the Spam Score accuracy. If you’re doing spam investigation, you’re probably looking at spammier sites. If you’re looking at a random hundred sites, you should expect that the flags would correlate with the percentages. If I look at a random hundred 4 flag Spam Score sites, 7.5% of those I would expect on average to be penalized or banned. If you are therefore seeing sites that don’t fit those, they probably fit into the percentiles that were not penalized, or up here were penalized, down here weren’t penalized, that kind of thing.

Hopefully, you find Spam Score useful and interesting and you add it to your toolbox. We would love to hear from you on iterations and ideas that you’ve got for what we can do in the future, where else you’d like to see it, and where you’re finding it useful/not useful. That would be great.

Hopefully, you’ve enjoyed this edition of Whiteboard Friday and will join us again next week. Thanks so much. Take care.

Video transcription by Speechpad.com

ADDITION FROM RAND: I also urge folks to check out Marie Haynes’ excellent Start-to-Finish Guide to Using Google’s Disavow Tool. We’re going to update the feature to link to that as well.

Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it

Spam Score: Moz’s New Metric to Measure Penalization Risk

Posted by randfish

Today, I’m very excited to announce that Moz’s Spam Score, an R&D project we’ve worked on for nearly a year, is finally going live. In this post, you can learn more about how we’re calculating spam score, what it means, and how you can potentially use it in your SEO work.

How does Spam Score work?

Over the last year, our data science team, led by 
Dr. Matt Peters, examined a great number of potential factors that predicted that a site might be penalized or banned by Google. We found strong correlations with 17 unique factors we call “spam flags,” and turned them into a score.

Almost every subdomain in 
Mozscape (our web index) now has a Spam Score attached to it, and this score is viewable inside Open Site Explorer (and soon, the MozBar and other tools). The score is simple; it just records the quantity of spam flags the subdomain triggers. Our correlations showed that no particular flag was more likely than others to mean a domain was penalized/banned in Google, but firing many flags had a very strong correlation (you can see the math below).

Spam Score currently operates only on the subdomain level—we don’t have it for pages or root domains. It’s been my experience and the experience of many other SEOs in the field that a great deal of link spam is tied to the subdomain-level. There are plenty of exceptions—manipulative links can and do live on plenty of high-quality sites—but as we’ve tested, we found that subdomain-level Spam Score was the best solution we could create at web scale. It does a solid job with the most obvious, nastiest spam, and a decent job highlighting risk in other areas, too.

How to access Spam Score

Right now, you can find Spam Score inside 
Open Site Explorer, both in the top metrics (just below domain/page authority) and in its own tab labeled “Spam Analysis.” Spam Score is only available for Pro subscribers right now, though in the future, we may make the score in the metrics section available to everyone (if you’re not a subscriber, you can check it out with a free trial). 

The current Spam Analysis page includes a list of subdomains or pages linking to your site. You can toggle the target to look at all links to a given subdomain on your site, given pages, or the entire root domain. You can further toggle source tier to look at the Spam Score for incoming linking pages or subdomains (but in the case of pages, we’re still showing the Spam Score for the subdomain on which that page is hosted).

You can click on any Spam Score row and see the details about which flags were triggered. We’ll bring you to a page like this:

Back on the original Spam Analysis page, at the very bottom of the rows, you’ll find an option to export a disavow file, which is compatible with Google Webmaster Tools. You can choose to filter the file to contain only those sites with a given spam flag count or higher:

Disavow exports usually take less than 3 hours to finish. We can send you an email when it’s ready, too.

WARNING: Please do not export this file and simply upload it to Google! You can really, really hurt your site’s ranking and there may be no way to recover. Instead, carefully sort through the links therein and make sure you really do want to disavow what’s in there. You can easily remove/edit the file to take out links you feel are not spam. When Moz’s Cyrus Shepard disavowed every link to his own site, it took more than a year for his rankings to return!

We’ve actually made the file not-wholly-ready for upload to Google in order to be sure folks aren’t too cavalier with this particular step. You’ll need to open it up and make some edits (specifically to lines at the top of the file) in order to ready it for Webmaster Tools

In the near future, we hope to have Spam Score in the Mozbar as well, which might look like this: 

Sweet, right? 🙂

Potential use cases for Spam Analysis

This list probably isn’t exhaustive, but these are a few of the ways we’ve been playing around with the data:

  1. Checking for spammy links to your own site: Almost every site has at least a few bad links pointing to it, but it’s been hard to know how much or how many potentially harmful links you might have until now. Run a quick spam analysis and see if there’s enough there to cause concern.
  2. Evaluating potential links: This is a big one where we think Spam Score can be helpful. It’s not going to catch every potentially bad link, and you should certainly still use your brain for evaluation too, but as you’re scanning a list of link opportunities or surfing to various sites, having the ability to see if they fire a lot of flags is a great warning sign.
  3. Link cleanup: Link cleanup projects can be messy, involved, precarious, and massively tedious. Spam Score might not catch everything, but sorting links by it can be hugely helpful in identifying potentially nasty stuff, and filtering out the more probably clean links.
  4. Disavow Files: Again, because Spam Score won’t perfectly catch everything, you will likely need to do some additional work here (especially if the site you’re working on has done some link buying on more generally trustworthy domains), but it can save you a heap of time evaluating and listing the worst and most obvious junk.

Over time, we’re also excited about using Spam Score to help improve the PA and DA calculations (it’s not currently in there), as well as adding it to other tools and data sources. We’d love your feedback and insight about where you’d most want to see Spam Score get involved.

Details about Spam Score’s calculation

This section comes courtesy of Moz’s head of data science, Dr. Matt Peters, who created the metric and deserves (at least in my humble opinion) a big round of applause. – Rand

Definition of “spam”

Before diving into the details of the individual spam flags and their calculation, it’s important to first describe our data gathering process and “spam” definition.

For our purposes, we followed Google’s definition of spam and gathered labels for a large number of sites as follows.

  • First, we randomly selected a large number of subdomains from the Mozscape index stratified by mozRank.
  • Then we crawled the subdomains and threw out any that didn’t return a “200 OK” (redirects, errors, etc).
  • Finally, we collected the top 10 de-personalized, geo-agnostic Google-US search results using the full subdomain name as the keyword and checked whether any of those results matched the original keyword. If they did not, we called the subdomain “spam,” otherwise we called it “ham.”

We performed the most recent data collection in November 2014 (after the Penguin 3.0 update) for about 500,000 subdomains.

Relationship between number of flags and spam

The overall Spam Score is currently an aggregate of 17 different “flags.” You can think of each flag a potential “warning sign” that signals that a site may be spammy. The overall likelihood of spam increases as a site accumulates more and more flags, so that the total number of flags is a strong predictor of spam. Accordingly, the flags are designed to be used together—no single flag, or even a few flags, is cause for concern (and indeed most sites will trigger at least a few flags).

The following table shows the relationship between the number of flags and percent of sites with those flags that we found Google had penalized or banned:

ABOVE: The overall probability of spam vs. the number of spam flags. Data collected in Nov. 2014 for approximately 500K subdomains. The table also highlights the three overall danger levels: low/green (< 10%) moderate/yellow (10-50%) and high/red (>50%)

The overall spam percent averaged across a large number of sites increases in lock step with the number of flags; however there are outliers in every category. For example, there are a small number of sites with very few flags that are tagged as spam by Google and conversely a small number of sites with many flags that are not spam.

Spam flag details

The individual spam flags capture a wide range of spam signals link profiles, anchor text, on page signals and properties of the domain name. At a high level the process to determine the spam flags for each subdomain is:

  • Collect link metrics from Mozscape (mozRank, mozTrust, number of linking domains, etc).
  • Collect anchor text metrics from Mozscape (top anchor text phrases sorted by number of links)
  • Collect the top five pages by Page Authority on the subdomain from Mozscape
  • Crawl the top five pages plus the home page and process to extract on page signals
  • Provide the output for Mozscape to include in the next index release cycle

Since the spam flags are incorporated into in the Mozscape index, fresh data is released with each new index. Right now, we crawl and process the spam flags for each subdomains every two – three months although this may change in the future.

Link flags

The following table lists the link and anchor text related flags with the the odds ratio for each flag. For each flag, we can compute two percents: the percent of sites with that flag that are penalized by Google and the percent of sites with that flag that were not penalized. The odds ratio is the ratio of these percents and gives the increase in likelihood that a site is spam if it has the flag. For example, the first row says that a site with this flag is 12.4 times more likely to be spam than one without the flag.

ABOVE: Description and odds ratio of link and anchor text related spam flags. In addition to a description, it lists the odds ratio for each flag which gives the overall increase in spam likelihood if the flag is present).

Working down the table, the flags are:

  • Low mozTrust to mozRank ratio: Sites with low mozTrust compared to mozRank are likely to be spam.
  • Large site with few links: Large sites with many pages tend to also have many links and large sites without a corresponding large number of links are likely to be spam.
  • Site link diversity is low: If a large percentage of links to a site are from a few domains it is likely to be spam.
  • Ratio of followed to nofollowed subdomains/domains (two separate flags): Sites with a large number of followed links relative to nofollowed are likely to be spam.
  • Small proportion of branded links (anchor text): Organically occurring links tend to contain a disproportionate amount of banded keywords. If a site does not have a lot of branded anchor text, it’s a signal the links are not organic.

On-page flags

Similar to the link flags, the following table lists the on page and domain name related flags:

ABOVE: Description and odds ratio of on page and domain name related spam flags. In addition to a description, it lists the odds ratio for each flag which gives the overall increase in spam likelihood if the flag is present).

  • Thin content: If a site has a relatively small ratio of content to navigation chrome it’s likely to be spam.
  • Site mark-up is abnormally small: Non-spam sites tend to invest in rich user experiences with CSS, Javascript and extensive mark-up. Accordingly, a large ratio of text to mark-up is a spam signal.
  • Large number of external links: A site with a large number of external links may look spammy.
  • Low number of internal links: Real sites tend to link heavily to themselves via internal navigation and a relative lack of internal links is a spam signal.
  • Anchor text-heavy page: Sites with a lot of anchor text are more likely to be spam then those with more content and less links.
  • External links in navigation: Spam sites may hide external links in the sidebar or footer.
  • No contact info: Real sites prominently display their social and other contact information.
  • Low number of pages found: A site with only one or a few pages is more likely to be spam than one with many pages.
  • TLD correlated with spam domains: Certain TLDs are more spammy than others (e.g. pw).
  • Domain name length: A long subdomain name like “bycheapviagra.freeshipping.onlinepharmacy.com” may indicate keyword stuffing.
  • Domain name contains numerals: domain names with numerals may be automatically generated and therefore spam.

If you’d like some more details on the technical aspects of the spam score, check out the 
video of Matt’s 2012 MozCon talk about Algorithmic Spam Detection or the slides (many of the details have evolved, but the overall ideas are the same):

We’d love your feedback

As with all metrics, Spam Score won’t be perfect. We’d love to hear your feedback and ideas for improving the score as well as what you’d like to see from it’s in-product application in the future. Feel free to leave comments on this post, or to email Matt (matt at moz dot com) and me (rand at moz dot com) privately with any suggestions.

Good luck cleaning up and preventing link spam!



Not a Pro Subscriber? No problem!



Sign up for The Moz Top 10, a semimonthly mailer updating you on the top ten hottest pieces of SEO news, tips, and rad links uncovered by the Moz team. Think of it as your exclusive digest of stuff you don’t have time to hunt down but want to read!

Reblogged 4 years ago from tracking.feedpress.it